Patents by Inventor MEI-HUAN YANG

MEI-HUAN YANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10608830
    Abstract: The disclosure generally relates to power over fiber technology configured to provide electrical power and communications via fiber to one or more sensors of one or more varieties. More particularly, the disclosure relates to a sensor system comprising a laser data module operatively connected to a powered sensor module, wherein the powered sensor module receives a light, converts the light to electrical power, and powers a sensor with the electrical power, and wherein the powered sensor module transmits signals from the sensor to a laser data module.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: March 31, 2020
    Assignee: MH GOPOWER COMPANY LIMITED
    Inventors: Mei-huan Yang, Cheng-liang Wu, Terry Zahuranec, Remigio Perales, Kun-Hsien Chen, Wei-sheng Chao, Ying-lin Tseng, Te-chih Huang, Jheng-syuan Shih, Mu-kai Su
  • Patent number: 10553736
    Abstract: Provided is a photovoltaic power converter receiver, including a photovoltaic cell, a waveguide coupled to the photovoltaic cell, and an optical transmission device of which an end is coupled to the waveguide for transmitting an optical wave to the photovoltaic cell through the waveguide, wherein the end of the optical transmission device is offset from a longitudinal central axis of the waveguide by a distance Doffset.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: February 4, 2020
    Assignee: MH GO POWER COMPANY LIMITED
    Inventors: Mei-huan Yang, Terry Zahuranec, Cheng-Liang Wu, Remigio Perales, Wei-Sheng Chao, Kuo-Hsien Wu, Ying-Lin Tseng, Mu-Kai Su, Jonathan Jackson
  • Publication number: 20190222211
    Abstract: This disclosure presents a power switching module combining a novel gate driver with a photonic isolated power source which can output a high voltage and high power at the same time, and thus can drive a power semiconductor device. The disclosed power switching module could simplify the switched mode power supply structure to (1) replace the isolated power supply module; (2) simplify circuitry of the gate driver by integrating gate driver signaling opto-electronics; and (3) provide a module with power semiconductor device under switched mode power supply structure.
    Type: Application
    Filed: January 14, 2019
    Publication date: July 18, 2019
    Inventors: Mei-huan Yang, Cheng-liang Wu, Remigio Perales, Kun-hsien Chen, Wei-sheng Chao, Ying-lin Tseng, I-tsung Chen
  • Publication number: 20180227133
    Abstract: The disclosure generally relates to power over fiber technology configured to provide electrical power and communications via fiber to one or more sensors of one or more varieties. More particularly, the disclosure relates to a sensor system comprising a laser data module operatively connected to a powered sensor module, wherein the powered sensor module receives a light, converts the light to electrical power, and powers a sensor with the electrical power, and wherein the powered sensor module transmits signals from the sensor to a laser data module.
    Type: Application
    Filed: February 5, 2018
    Publication date: August 9, 2018
    Inventors: Mei-huan Yang, Cheng-liang Wu, Terry Zahuranec, Remigio Perales, Kun-Hsien Chen, Wei-sheng Chao, Ying-lin Tseng, Te-chih Huang, Jheng-syuan Shih, Mu-kai Su
  • Patent number: 9866170
    Abstract: Extremely fast dynamic control is allowed for hybrid PV/T (photovoltaic/thermal) distributed power production using concentrated solar power by manipulating the transmissive or reflective state of a capture element or mirror or lens that can pass highly concentrated solar light from one energy conversion device to another, such as a thermal collector and a photovoltaic receiver, such as a vertical multijunction cell array. This allows superior quality electrical backfeed into an electric utility, enhanced plant electrical production revenue, and responsiveness to a multitude of conditions to meet new stringent engineering requirements for distributed power plants. The mirror or lens can be physically articulated using fast changing of a spatial variable, or can be a fixed smart material that changes state. A mechanical jitter or variable state jitter can be applied to the capture element, including at utility electric grid line frequency.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: January 9, 2018
    Assignee: MH GOPOWER COMPANY LIMITED
    Inventors: Mei-huan Yang, Jonathan A. Jackson, Terry Zahuranec, Michael J. Creager, Remigio Perales, Cheng-Liang Wu, Chin-Wei Hsu, Chiun-Yen Tung, Ying-Jie Peng, Ping-Pang Lee, Mark J. Elting
  • Publication number: 20170005216
    Abstract: Provided is a photovoltaic power converter receiver, including a photovoltaic cell, a waveguide coupled to the photovoltaic cell, and an optical transmission device of which an end is coupled to the waveguide for transmitting an optical wave to the photovoltaic cell through the waveguide, wherein the end of the optical transmission device is offset from a longitudinal central axis of the waveguide by a distance Doffset.
    Type: Application
    Filed: July 1, 2015
    Publication date: January 5, 2017
    Inventors: Mei-huan Yang, Terry Zahuranec, Cheng-Liang Wu, Remigio Perales, Wei-Sheng Chao, Kuo-Hsien Wu, Ying-Lin Tseng, Mu-Kai Su, Jonathan Jackson
  • Publication number: 20160126382
    Abstract: An energy conversion device in electrical communication with at least one fin is provided to output multiple voltages. The at least one fin which is originating from inside the energy conversion device, which is formed from a metal contact disposed between energy conversion device components, and which is spaced with a first end contact and a second end contact. A power transistor module includes at least one transistor, a gate driver and the energy conversion device. The gate driver is configured to drive the at least one transistor. The energy conversion device is configured to supply isolated voltages to the gate driver.
    Type: Application
    Filed: June 29, 2015
    Publication date: May 5, 2016
    Inventors: MEI-HUAN YANG, TERRY ZAHURANEC, REMIGIO PERALES, CHENG-LIANG WU, WEI-SHENG CHAO, CHIN-WEI HSU, TE-CHIH HUANG, JHENG-SYUAN SHIH, PEI-YA WANG
  • Publication number: 20160005902
    Abstract: New high energy operating regimes for high intensity energy transfer for beam receiving, signal acquisition, and beam or signal generation for power beaming and wireless power transmission are made possible by new direct thermal pathways for heat sinking, where an energy conversion device comprises a plurality of fins [1] originating from inside the energy conversion device; [2] formed from an energy conversion device component; and where those fins [3] individually support traffic in energy carriers essential to the function of the energy conversion device. This allows high energy thermal interfacing and high intensity energy conversion, such as for receiving and transducing extremely high intensity light shined onto a small surface semiconductor device such as a vertical multijunction photovoltaic receiver. This allows high intensity energy transfer for beam receiving, signal acquisition, and beam or signal generation for high intensity power beaming and wireless power transmission.
    Type: Application
    Filed: October 31, 2014
    Publication date: January 7, 2016
    Applicant: MH Solar Co., LTD.
    Inventors: Chiun-Yen Tung, Mei-huan Yang, Terry Zahuranec, Remigio Perales, Te-Chih Huang, Jheng-Syuan Shih, Cheng-Liang Wu, Chin-Wei Hsu
  • Publication number: 20160005906
    Abstract: Thermal, electrical and/or optical interfacing for three-dimensional optoelectronic devices, such as semiconductor device billets, allows high intensity operation, such as for receiving and transducing extremely high intensity light shined onto a small surface semiconductor optoelectronic device such as a photovoltaic receiver or cell, transducer, waveguide or splitter. This allows high intensity energy transfer for beam receiving, signal acquisition, and beam or signal generation for high intensity power beaming and wireless power transmission. Preferred embodiments include three-dimensional photovoltaic receiver billets capable of receiving thousands of suns intensity or high intensity laser light for power conversion, such as by using edge-illuminated vertical multijunction photovoltaic receivers. Heat sink holding structures assist in thermal and electromagnetic communication with opposing billet surfaces.
    Type: Application
    Filed: July 3, 2014
    Publication date: January 7, 2016
    Applicant: MH Solar Co. LTD.
    Inventors: Chiun-Yen Tung, Mei-huan Yang, Terry Zahuranec, Remigio Perales, Te-Chih Huang, Jheng-Syuan Shih, Cheng-Liang Wu, Chin-Wei Hsu, Mark J. Elting
  • Publication number: 20150372640
    Abstract: Extremely fast dynamic control is allowed for hybrid PV/T (photovoltaic/thermal) distributed power production using concentrated solar power by manipulating the transmissive or reflective state of a capture element or mirror or lens that can pass highly concentrated solar light from one energy conversion device to another, such as a thermal collector and a photovoltaic receiver, such as a vertical multijunction cell array. This allows superior quality electrical backfeed into an electric utility, enhanced plant electrical production revenue, and responsiveness to a multitude of conditions to meet new stringent engineering requirements for distributed power plants. The mirror or lens can be physically articulated using fast changing of a spatial variable, or can be a fixed smart material that changes state. A mechanical jitter or variable state jitter can be applied to the capture element, including at utility electric grid line frequency.
    Type: Application
    Filed: June 19, 2014
    Publication date: December 24, 2015
    Applicant: MH Solar Co. LTD.
    Inventors: Mei-huan Yang, Jonathan A. Jackson, Terry Zahuranec, Michael J. Creager, Remigio Perales, Cheng-Liang Wu, Chin-Wei Hsu, Chiun-Yen Tung, Ying-Jie Peng, Ping-Pang Lee, Mark J. Elting
  • Publication number: 20150357498
    Abstract: A voltage source generator includes a light-transmissive component and a plurality of vertical multi junction (VMJ) cells. The light-transmissive component includes an inner space. The VMJ cells are disposed within the inner space of the light-transmissive component to receive light and perform light-to-electricity conversion. The VMJ cells are connected in series. The voltage source generator can generate a kV-level voltage and meet small-sized and low-cost demands. A voltage source module includes at least two voltage source generators connected to at least one electrical connector.
    Type: Application
    Filed: June 4, 2014
    Publication date: December 10, 2015
    Inventors: MEI-HUAN YANG, CHIUN-YEN TUNG, TERRY ZAHURANEC, CHENG-LIANG WU, CHIN-WEI HSU, WEI-SHENG CHAO, KUN-SAIN CHEN, YING-JIE PENG, YING-LIN TSENG, MING-ZEN CHUANG, PING-PANG LEE
  • Publication number: 20150000729
    Abstract: A solar cell includes a vertical multi-junction (VMJ) cell and a passivation layer. The VMJ cell includes a plurality of PN junction substrates spaced from each other and a plurality of electrode layers. Each of the PN junction substrates includes a P+ type end surface, a P type end surface, an N type end surface, and an N+ type end surface. Each of the electrode layers is disposed between and connected to two adjacent PN junction substrates and has an exposing surface. The passivation layer covers the P+ type end surfaces, the P type end surfaces, the N type end surfaces, the N+ type end surfaces and the exposing surfaces to reduce a carrier recombination probability induced by absorbing sunlight. A method of manufacturing the solar cell includes providing a vertical multi-junction (VMJ) cell and forming a passivation layer on the VMJ cell.
    Type: Application
    Filed: February 21, 2014
    Publication date: January 1, 2015
    Applicant: MH SOLAR COMPANY LIMITED
    Inventors: MEI-HUAN YANG, CHIUN-YEN TUNG, CHIN-WEI HSU, CHENG-LIANG WU, KUN-SAIN CHEN, WEI-SHENG CHAO, YING-JIE PENG, TE-CHIH HUANG, MING-ZEN CHUANG