Patents by Inventor Meikei Ieong

Meikei Ieong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7314790
    Abstract: The present invention provides a semiconductor material that has enhanced electron and hole mobilities that comprises a Si-containing layer having a <110> crystal orientation and a biaxial compressive strain. The term “biaxial compressive stress” is used herein to describe the net stress caused by longitudinal compressive stress and lateral stress that is induced upon the Si-containing layer during the manufacturing of the semiconductor material. Other aspect of the present invention relates to a method of forming the semiconductor material of the present invention. The method of the present invention includes the steps of providing a silicon-containing <110> layer; and creating a biaxial strain in the silicon-containing <110> layer.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: January 1, 2008
    Assignee: International Business Machines Corporation
    Inventors: Victor Chan, Massimo V. Fischetti, John M. Hergenrother, Meikei Ieong, Rajesh Rengarajan, Alexander Reznicek, Paul M. Solomon, Chun-yung Sung, Min Yang
  • Patent number: 7312487
    Abstract: A three dimensional (3D) integrated circuit (IC), 3D IC chip and method of fabricating a 3D IC chip. The chip includes multiple layers of circuits, e.g., silicon insulator (SOI) CMOS IC layers, each including circuit elements. The layers may be formed in parallel and one layer attached to another to form a laminated 3D chip.
    Type: Grant
    Filed: August 16, 2004
    Date of Patent: December 25, 2007
    Assignee: International Business Machines Corporation
    Inventors: Syed M. Alam, Ibrahim M. Elfadel, Kathryn W. Guarini, Meikei Ieong, Prabhakar N. Kudva, David S. Kung, Mark A. Lavin, Arifur Rahman
  • Publication number: 20070287256
    Abstract: A FINFET-containing structure having multiple FINs that are merged together without source/drain contact pads or a local interconnect is provided. In accordance with the present invention, the inventive structure includes a plurality of semiconducting bodies (i.e., FINs) which extend above a surface of a substrate. A common patterned gate stack surrounds the plurality of semiconducting bodies and a nitride-containing spacer is located on sidewalls of the common patterned gate stack. An epitaxial semiconductor layer is used to merge each of the semiconducting bodies together.
    Type: Application
    Filed: June 7, 2006
    Publication date: December 13, 2007
    Applicant: International Business Machines Corporation
    Inventors: Leland Chang, Wilfried E. Haensch, Meikei Ieong, Ghavam Shahidi, Huiling Shang
  • Publication number: 20070287224
    Abstract: A three dimensional (3D) integrated circuit (IC), 3D IC chip and method of fabricating a 3D IC chip. The chip includes multiple layers of circuits, e.g., silicon insulator (SOI) CMOS IC layers, each including circuit elements. The layers may be formed in parallel and one layer attached to another to form a laminated 3D chip.
    Type: Application
    Filed: April 19, 2007
    Publication date: December 13, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPERATION
    Inventors: Syed Alam, Ibrahim Elfadel, Kathryn Guarini, Meikei Ieong, Prabhakar Kudva, David Kung, Mark Lavin, Arifur Rahman
  • Publication number: 20070278586
    Abstract: Methods for fabricating a CMOS structure use a first gate stack located over a first orientation region of a semiconductor substrate. A second gate material layer is located over the first gate stack and a laterally adjacent second orientation region of the semiconductor substrate. A planarizing layer is located upon the second gate material layer. The planarizing layer and the second gate material layer are non-selectively etched to form a second gate stack that approximates the height of the first gate stack. An etch stop layer may also be formed upon the first gate stack. The resulting CMOS structure may comprise different gate dielectrics, metal gates and silicon gates.
    Type: Application
    Filed: May 31, 2006
    Publication date: December 6, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Tze-Chiang Chen, Meikei Ieong, Rajarao Jammy, Mukesh Khare, Chun-yung Sung, Richard Wise, Hongwen Yan, Ying Zhang
  • Publication number: 20070269945
    Abstract: The present invention provides a method of integrating semiconductor devices such that different types of devices are formed upon a specific crystal orientation of a hybrid substrate that enhances the performance of each type of device. Specifically, the present invention provides a method of integrating semiconductor devices such that pFETs are located on a (110) crystallographic plane, while nFETs are located on a (100) crystallographic plane of a planar hybrid substrate. The method of the present invention also improves the performance of creating SOI-like devices with a combination of a buried insulator and counter-doping layers. The present invention also relates to semiconductor structures that are formed utilizing the method of the present invention.
    Type: Application
    Filed: July 30, 2007
    Publication date: November 22, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Meikei Ieong, Min Yang
  • Patent number: 7291886
    Abstract: A hybrid substrate having a high-mobility surface for use with planar and/or multiple-gate metal oxide semiconductor field effect transistors (MOSFETs) is provided. The hybrid substrate has a first surface portion that is optimal for n-type devices, and a second surface portion that is optimal for p-type devices. Due to proper surface and wafer flat orientations in each semiconductor layers of the hybrid substrate, all gates of the devices are oriented in the same direction and all channels are located on the high mobility surface. The present invention also provides for a method of fabricating the hybrid substrate as well as a method of integrating at least one planar or multiple-gate MOSFET thereon.
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: November 6, 2007
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Meikei Ieong, Edward J. Nowak, Min Yang
  • Publication number: 20070252215
    Abstract: The present invention relates to a hybrid orientation semiconductor-on-insulator (SOI) substrate structure that contains a base semiconductor substrate with one or more first device regions and one or more second device regions located over the base semiconductor substrate. The one or more first device regions include an insulator layer with a first semiconductor device layer located atop. The one or more second device regions include a counter-doped semiconductor layer with a second semiconductor device layer located atop. The first and the second semiconductor device layers have different crystallographic orientations. Preferably, the first (or the second) device regions are n-FET device regions, and the first semiconductor device layer has a crystallographic orientation that enhances electron mobility, while the second (or the first) device regions are p-FET device regions, and the second semiconductor device layer has a different surface crystallographic orientation that enhances hole mobility.
    Type: Application
    Filed: April 26, 2006
    Publication date: November 1, 2007
    Applicant: International Business Machines Corporation
    Inventors: Meikei Ieong, Xinlin Wang, Min Yang
  • Publication number: 20070254438
    Abstract: A method for forming a transistor. A semiconductor substrate is provided. The semiconductor substrate is patterned to provide a first body edge. A first gate structure of a first fermi level is provided adjacent the first body edge. The semiconductor substrate is patterned to provide a second body edge. The first and second body edges of the semiconductor substrate define a transistor body. A second gate structure of a second fermi level is provided adjacent the second body edge. A substantially uniform dopant concentration density is formed throughout the transistor body.
    Type: Application
    Filed: July 9, 2007
    Publication date: November 1, 2007
    Inventors: Andres Bryant, Meikei Ieong, K. Muller, Edward Nowak, David Fried, Jed Rankin
  • Patent number: 7288445
    Abstract: Accordingly, the present invention provides a double gated transistor and a method for forming the same that results in improved device performance and density. The preferred embodiment of the present invention uses provides a double gated transistor with asymmetric gate doping, where one of the double gates is doped degenerately n-type and the other degenerately p-type. By doping on of the gates n-type, and the other p-type, the threshold voltage of the resulting device is improved. In particular, by asymmetrically doping the two gates, the resulting transistor can, with adequate doping of the body, have a threshold voltage in a range that enables low-voltage CMOS operation. For example, a transistor can be created that has a threshold voltage between 0V and 0.5V for nFETs and between 0 and ?0.5V for pFETs.
    Type: Grant
    Filed: May 9, 2005
    Date of Patent: October 30, 2007
    Assignee: International Business Machines Corporation
    Inventors: Andres Bryant, Meikei Ieong, K. Paul Muller, Edward J. Nowak, David M. Fried, Jed Rankin
  • Publication number: 20070246753
    Abstract: MOSFET devices suitable for operation at gate lengths less than about 40 nm, and methods of their fabrication is being presented. The MOSFET devices include a ground plane formed of a monocrystalline Si based material. A Si based body layer is epitaxially disposed over the ground plane. The body layer is doped with impurities of opposite type than the ground plane. The gate has a metal with a mid-gap workfunction directly contacting a gate insulator layer. The gate is patterned to a length of less than about 40 nm, and possibly less than 20 nm. The source and the drain of the MOSFET are doped with the same type of dopant as the body layer. In CMOS embodiments of the invention the metal in the gate of the NMOS and the PMOS devices may be the same metal.
    Type: Application
    Filed: April 20, 2006
    Publication date: October 25, 2007
    Inventors: Jack Chu, Bruce Doris, Meikei Ieong, Jing Wang
  • Publication number: 20070228473
    Abstract: The present invention comprises a method for forming an ultra-thin channel MOSFET and the ultra-thin channel MOSFET produced therefrom. Specifically, the method comprises providing an SOI substrate having a buried insulating layer underlying an SOI layer; forming a pad stack atop the SOI layer; forming a block mask having a channel via atop the pad stack; providing a localized oxide region in the SOI layer on top of the buried insulating layer thereby thinning a portion of the SOI layer, the localized oxide region being self-aligned with the channel via; forming a gate in the channel via; removing at least the block mask; and forming source/drain extensions in the SOI layer abutting the thinned portion of the SOI layer. Providing the localized oxide region further comprises implanting oxygen dopant through the channel via into a portion of the SOI layer; and annealing the dopant to create the localized oxide region.
    Type: Application
    Filed: June 5, 2007
    Publication date: October 4, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Diane Boyd, Bruce Doris, Meikei Ieong, Devendra Sadana
  • Patent number: 7268377
    Abstract: The present invention provides a method of integrating semiconductor devices such that different types of devices are formed upon a specific crystal orientation of a hybrid substrate that enhances the performance of each type of device. Specifically, the present invention provides a method of integrating semiconductor devices such that pFETs are located on a (110) crystallographic plane, while nFETs are located on a (100) crystallographic plane of a planar hybrid substrate. The method of the present invention also improves the performance of creating SOI-like devices with a combination of a buried insulator and counter-doping layers. The present invention also relates to semiconductor structures that are formed utilizing the method of the present invention.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: September 11, 2007
    Assignee: International Business Machines Corporation
    Inventors: Meikei Ieong, Min Yang
  • Patent number: 7259049
    Abstract: A double-gate field effect transistor (DGFET) structure and method of forming such a structure in which the parasitic capacitance under the source/drain regions is substantially reduced are provided. Two new means to reduce the parasitic capacitance under the source/drain regions are provided. Firstly, the silicon area outside the gate is converted to oxide while protecting a silicon ledge adjacent to the gate with a first spacer. The oxidation can be facilitated using a self-aligned oxygen implant, or implant of some other species. Secondly, the first spacer is removed, replaced with a second spacer, and a new silicon source/drain area is grown by employing lateral selective epi overgrowth and using the now exposed silicon ledge as a seed, over the self-aligned oxide isolation region. This achieves a low-capacitance to the back-plane, while retaining control of the threshold voltages.
    Type: Grant
    Filed: June 7, 2005
    Date of Patent: August 21, 2007
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Guy M. Cohen, Meikei Ieong, Ronnen A. Roy, Paul M Solomon, Min Yang
  • Publication number: 20070170507
    Abstract: The present invention provides a method of forming a semiconducting substrate including the steps of providing an initial structure having first device region comprising a first orientation material and a second device region having a second orientation material; forming a first concentration of lattice modifying material atop the first orientation material; forming a second concentration of the lattice modifying material atop the second orientation material; intermixing the first concentration of lattice modifying material with the first orientation material to produce a first lattice dimension surface and the second concentration of lattice modifying material the second orientation material to produce a second lattice dimension surface; and forming a first strained semiconducting layer atop the first lattice dimension surface and a second strained semiconducting layer atop the second lattice dimension surface.
    Type: Application
    Filed: March 29, 2007
    Publication date: July 26, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Huilong Zhu, Bruce Doris, Philip Oldiges, Meikei Ieong, Min Yang, Huajie Chen
  • Patent number: 7247569
    Abstract: The present invention comprises a method for forming an ultra-thin channel MOSFET and the ultra-thin channel MOSFET produced therefrom. Specifically, the method comprises providing an SOI substrate having a buried insulating layer underlying an SOI layer; forming a pad stack atop the SOI layer; forming a block mask having a channel via atop the pad stack; providing a localized oxide region in the SOI layer on top of the buried insulating layer thereby thinning a portion of the SOI layer, the localized oxide region being self-aligned with the channel via; forming a gate in the channel via; removing at least the block mask; and forming source/drain extensions in the SOI layer abutting the thinned portion of the SOI layer. Providing the localized oxide region further comprises implanting oxygen dopant through the channel via into a portion of the SOI layer; and annealing the dopant to create the localized oxide region.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: July 24, 2007
    Assignee: International Business Machines Corporation
    Inventors: Diane C. Boyd, Bruce B. Doris, Meikei Ieong, Devendra K. Sadana
  • Patent number: 7244958
    Abstract: A structure and method of fabrication for PFET devices in a compressively strained Ge layer is disclosed. The fabrication method of such devices is compatible with standard CMOS technology and it is fully scalable. The processing includes selective epitaxial depositions of an over 50% Ge content buffer layer, a pure Ge layer, and a SiGe top layer. Fabricated buried channel PMOS devices hosted in the compressively strained Ge layer show superior device characteristics relative to similar Si devices.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: July 17, 2007
    Assignee: International Business Machines Corporation
    Inventors: Huiling Shang, Meikei Ieong, Jack Oon Chu, Kathryn W. Guarini
  • Publication number: 20070138556
    Abstract: A double-gate transistor has front (upper) and back gates aligned laterally by a process of forming symmetric sidewalls in proximity to the front gate and then oxidizing the back gate electrode at a temperature of at least 1000 degrees for a time sufficient to relieve stress in the structure, the oxide penetrating from the side of the transistor body to thicken the back gate oxide on the outer edges, leaving an effective thickness of gate oxide at the center, aligned with the front gate electrode. Optionally, an angled implant from the sides of an oxide enhancing species encourages relatively thicker oxide in the outer implanted areas and an oxide-retarding implant across the transistor body retards oxidation in the vertical direction, thereby permitting increase of the lateral extent of the oxidation.
    Type: Application
    Filed: February 16, 2007
    Publication date: June 21, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Omer Dokumaci, Bruce Doris, Kathryn Guarini, Suryanarayan Hegde, Meikei Ieong, Erin Jones
  • Publication number: 20070128785
    Abstract: A method of fabricating complementary metal oxide semiconductor (CMOS) field effect transistors which includes selective doping and full silicidation of a polysilicon material comprising the gate electrode of the transistor. In one embodiment, prior to silicidation, the polysilicon is amorphized. In a further embodiment, siliciding is performed at a low substrate temperature.
    Type: Application
    Filed: February 5, 2007
    Publication date: June 7, 2007
    Inventors: CYRIL CABRAL, Meikei Ieong, Jakub Kedzierski
  • Patent number: 7220626
    Abstract: The present invention provides a method of forming a semiconducting substrate including the steps of providing an initial structure having first device region comprising a first orientation material and a second device region having a second orientation material; forming a first concentration of lattice modifying material atop the first orientation material; forming a second concentration of the lattice modifying material atop the second orientation material; intermixing the first concentration of lattice modifying material with the first orientation material to produce a first lattice dimension surface and the second concentration of lattice modifying material the second orientation material to produce a second lattice dimension surface; and forming a first strained semiconducting layer atop the first lattice dimension surface and a second strained semiconducting layer atop the second lattice dimension surface.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: May 22, 2007
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Bruce B. Doris, Philip J. Oldiges, Meikei Ieong, Min Yang, Huajie Chen