Patents by Inventor Meir Gazit

Meir Gazit has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9831824
    Abstract: A device having a switch with a voltage applied across the switch. A current sensing circuit is connected to one terminal of the switch. The current sensing circuit receives power independently of the voltage applied across the switch. The power supply shares the other terminal of the switch with the current sensing circuit. The switch is adapted for opening and closing. When the switch closes, the current sensing circuit senses current through the switch and upon opening the switch the high voltage of the switch is blocked from the current sensing circuit. The sense current is caused to flow from the current sensing circuit to the other terminal when the switch is closed. The flow of the sense current produces a voltage which is compared differentially to another voltage referenced by the other terminal.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: November 28, 2017
    Assignee: SolareEdge Technologies Ltd.
    Inventor: Meir Gazit
  • Patent number: 9819178
    Abstract: A bypass mechanism for a photovoltaic module which switches out the electronics and switches in a bypass mechanism.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: November 14, 2017
    Assignee: Solaredge Technologies Ltd.
    Inventors: Meir Gazit, Israel Gershman, Ehud Kirmayer, Leon Kupershmidt, Meir Adest
  • Publication number: 20170324330
    Abstract: A digital average-input current-mode control loop for a DC/DC power converter. The power converter may be, for example, a buck converter, boost converter, or cascaded buck-boost converter. The purpose of the proposed control loop is to set the average converter input current to the requested current. Controlling the average input current can be relevant for various applications such as power factor correction (PFC), photovoltaic converters, and more. The method is based on predicting the inductor current based on measuring the input voltage, the output voltage, and the inductor current. A fast cycle-by-cycle control loop may be implemented. The conversion method is described for three different modes. For each mode a different control loop is used to control the average input current, and the control loop for each of the different modes is described. Finally, the algorithm for switching between the modes is disclosed.
    Type: Application
    Filed: April 24, 2017
    Publication date: November 9, 2017
    Inventors: Amir Fishelov, Meir Gazit, Nikolay Radimov
  • Publication number: 20170294780
    Abstract: A protection method in a distributed power system including of DC power sources and multiple power modules which include inputs coupled to the DC power sources. The power modules include outputs coupled in series with one or more other power modules to form a serial string. An inverter is coupled to the serial string. The inverter converts power input from the string and produces output power. When the inverter stops production of the output power, each of the power modules is shut down and thereby the power input to the inverter is ceased.
    Type: Application
    Filed: June 19, 2017
    Publication date: October 12, 2017
    Inventors: Meir Adest, Guy Sella, Lior Handelsman, Yoav Galin, Amir Fishelov, Meir Gazit, Yaron Binder
  • Publication number: 20170255218
    Abstract: An electronic circuit for converting power from a floating source of DC power to a dual direct current (DC) output is disclosed. The electronic circuit may include a positive input terminal and a negative input terminal connectible to the floating source of DC power. The dual DC output may connectible to the input of an inverter. A positive output terminal connected to the positive input terminal of the inverter and a negative output terminal and a ground terminal which may be connected to the input of the inverter. A series connection of a first power switch and a second power switch connected across the positive input terminal and the negative input terminal. A negative return path may include a first diode and a second diode connected between the negative input terminal and the negative output terminal. A resonant circuit may connect between the series connection and the negative return path.
    Type: Application
    Filed: March 21, 2017
    Publication date: September 7, 2017
    Inventors: Meir Gazit, Vadim Lubomirsky
  • Patent number: 9748896
    Abstract: A junction box used for making electrical connections to a photovoltaic panel. The junction box has two chambers including a first chamber and a second chamber and a wall common to and separating both chambers. The wall may be adapted to have an electrical connection therethrough. The two lids are adapted to seal respectively the two chambers. The two lids are on opposite sides of the junction box relative to the photovoltaic panel. The two lids may be attachable using different sealing processes to a different level of hermeticity. The first chamber may be adapted to receive a circuit board for electrical power conversion. The junction box may include supports for mounting a printed circuit board in the first chamber. The second chamber is configured for electrical connection to the photovoltaic panel. A metal heat sink may be bonded inside the first chamber.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: August 29, 2017
    Assignee: Solaredge Technologies Ltd.
    Inventors: Guy Sella, Lior Handelsman, Vadim Shmukler, Meir Adest, Meir Gazit, Yoav Galin
  • Patent number: 9748897
    Abstract: A junction box used for making electrical connections to a photovoltaic panel. The junction box has two chambers including a first chamber and a second chamber and a wall common to and separating both chambers. The wall may be adapted to have an electrical connection therethrough. The two lids are adapted to seal respectively the two chambers. The two lids are on opposite sides of the junction box relative to the photovoltaic panel. The two lids may be attachable using different sealing processes to a different level of hermeticity. The first chamber may be adapted to receive a circuit board for electrical power conversion. The junction box may include supports for mounting a printed circuit board in the first chamber. The second chamber is configured for electrical connection to the photovoltaic panel. A metal heat sink may be bonded inside the first chamber.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: August 29, 2017
    Assignee: Solaredge Technologies Ltd.
    Inventors: Guy Sella, Lior Handelsman, Vadim Shmukler, Meir Adest, Meir Gazit, Yoav Galin
  • Publication number: 20170222542
    Abstract: A distributed power system including multiple DC power sources and multiple power modules. The power modules include inputs coupled respectively to the DC power sources and outputs coupled in series to form a serial string. An inverter is coupled to the serial string. The inverter converts power input from the serial string to output power. A signaling mechanism between the inverter and the power module is adapted for controlling operation of the power modules.
    Type: Application
    Filed: December 5, 2016
    Publication date: August 3, 2017
    Inventors: Meir Adest, Guy Sella, Lior Handelsman, Yoav Galin, Amir Fishelov, Meir Gazit, Yaron Binder
  • Publication number: 20170214363
    Abstract: A method for testing a photovoltaic panel connected to an electronic module. The electronic module includes an input attached to the photovoltaic panel and a power output. The method activates a bypass to the electronic module. The bypass provides a low impedance path between the input and the output of the electronic module. A current is injected into the electronic module thereby compensating for the presence of the electronic module during the testing. The current may be previously determined by measuring a circuit parameter of the electronic module. The circuit parameter may be impedance, inductance, resistance or capacitance.
    Type: Application
    Filed: November 21, 2016
    Publication date: July 27, 2017
    Applicants: Solaredge Technologies Ltd., Solaredge Technologies Ltd.
    Inventors: Meir Adest, Guy Sella, Lior Handelsman, Yoav Galin, Amir Fishelov, Meir Gazit, Tzachi Glovinsky, Yaron Binder
  • Publication number: 20170207746
    Abstract: A method for arc detection in a system including a photovoltaic panel and a load connectible to the photovoltaic panel with a DC power line. The method measures power delivered to the load thereby producing a first measurement result of the power delivered to the load. Power produced by the photovoltaic panel is also measured, thereby producing a second measurement result of power produced by the photovoltaic panel. The first measurement result is compared with the second measurement result thereby producing a differential power measurement result. Upon the differential power measurement result being more than a threshold value, an alarm condition may also be set. The second measurement result may be modulated and transmitted over the DC power line.
    Type: Application
    Filed: April 5, 2017
    Publication date: July 20, 2017
    Inventors: Ilan Yoscovich, Guy Sella, Meir Gazit, Yoav Galin, David Braginsky, Lior Handelsman, Meir Adest
  • Publication number: 20170201113
    Abstract: A method to control storage into and depletion from multiple energy storage devices. The method enables an operative connection between the energy storage devices and respective power converters. The energy storage devices are connectible across respective first terminals of the power converters. At the second terminals of the power converter, a common reference is set which may be a current reference or a voltage reference. An energy storage fraction is determined respectively for the energy storage devices. A voltage conversion ratio is maintained individually based on the energy storage fraction. The energy storage devices are stored individually with multiple variable rates of energy storage through the first terminals. The energy storage is complete for the energy storage devices substantially at a common end time responsive to the common reference.
    Type: Application
    Filed: December 19, 2016
    Publication date: July 13, 2017
    Inventor: Meir Gazit
  • Publication number: 20170170782
    Abstract: Methods for arc detection in a system including one or more photovoltaic generators, one or more photovoltaic power devices and a system power device and/or a load connectible to the photovoltaic generators and/or the photovoltaic power devices. The methods measure voltage, voltage noise and/or power delivered to the load or system power device. The methods may compare one or more measurements, an aggregation of measurements and/or values estimated from the measurements to one or more thresholds, and upon a comparison indicating a potential arcing condition, an alarm condition may be set. Embodiments include an arrangement of photovoltaic generators and photovoltaic power devices for reduced-impedance voltage loops which may enhance arc-detection capabilities.
    Type: Application
    Filed: January 17, 2017
    Publication date: June 15, 2017
    Inventors: Ilan Yoscovich, Guy Sella, Meir Gazit, Yoav Galin, David Braginsky, Lior Handelsman, Meir Adest, Yakir Loewenstern, Tzachi Glovinsky
  • Patent number: 9673711
    Abstract: A digital average-input current-mode control loop for a DC/DC power converter. The power converter may be, for example, a buck converter, boost converter, or cascaded buck-boost converter. The purpose of the proposed control loop is to set the average converter input current to the requested current. Controlling the average input current can be relevant for various applications such as power factor correction (PFC), photovoltaic converters, and more. The method is based on predicting the inductor current based on measuring the input voltage, the output voltage, and the inductor current. A fast cycle-by-cycle control loop may be implemented. The conversion method is described for three different modes. For each mode a different control loop is used to control the average input current, and the control loop for each of the different modes is described. Finally, the algorithm for switching between the modes is disclosed.
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: June 6, 2017
    Assignee: Solaredge Technologies LTD.
    Inventors: Amir Fishelov, Meir Gazit, Nikolay Radimov
  • Publication number: 20170141679
    Abstract: A distributed power system wherein a plurality of power converters are connected in parallel and share the power conversion load according to a prescribed function, but each power converter autonomously determines its share of power conversion. Each power converter operates according to its own power conversion formula/function, such that overall the parallel-connected converters share the power conversion load in a predetermined manner.
    Type: Application
    Filed: June 16, 2016
    Publication date: May 18, 2017
    Inventors: Meir Adest, Guy Sella, Lior Handelsman, Yoav Galin, Amir Fishelov, Meir Gazit, Tzachi Glovinski, Yaron Binder
  • Patent number: 9647442
    Abstract: A method for arc detection in a system including a photovoltaic panel and a load connectible to the photovoltaic panel with a DC power line. The method measures power delivered to the load thereby producing a first measurement result of the power delivered to the load. Power produced by the photovoltaic panel is also measured, thereby producing a second measurement result of power produced by the photovoltaic panel. The first measurement result is compared with the second measurement result thereby producing a differential power measurement result. Upon the differential power measurement result being more than a threshold value, an alarm condition may also be set. The second measurement result may be modulated and transmitted over the DC power line.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: May 9, 2017
    Assignee: Solaredge Technologies Ltd.
    Inventors: Ilan Yoscovich, Guy Sella, Meir Gazit, Yoav Galin, David Braginsky, Lior Handelsman, Meir Adest
  • Patent number: 9639106
    Abstract: An electronic circuit for converting power from a floating source of DC power to a dual direct current (DC) output is disclosed. The electronic circuit may include a positive input terminal and a negative input terminal connectible to the floating source of DC power. The dual DC output may connectible to the input of an inverter. A positive output terminal connected to the positive input terminal of the inverter and a negative output terminal and a ground terminal which may be connected to the input of the inverter. A series connection of a first power switch and a second power switch connected across the positive input terminal and the negative input terminal. A negative return path may include a first diode and a second diode connected between the negative input terminal and the negative output terminal. A resonant circuit may connect between the series connection and the negative return path.
    Type: Grant
    Filed: November 27, 2015
    Date of Patent: May 2, 2017
    Assignee: Solaredge Technologies Ltd.
    Inventors: Meir Gazit, Vadim Lubomirsky
  • Publication number: 20170104487
    Abstract: A voltage level shifting circuit with an input terminal and an output terminal. The level shifting circuit has a field-effect transistor (FET) switch with a gate attached to the input terminal, a drain attached to the output terminal and a source attached to a current changing mechanism. The current changing mechanism includes a current mirror circuit having an output connected between the source and an electrical earth. The output of the current mirror circuit is preferably adapted to change a current flowing between the drain and the source based on an input voltage applied to the gate.
    Type: Application
    Filed: December 22, 2016
    Publication date: April 13, 2017
    Inventor: Meir Gazit
  • Patent number: 9590526
    Abstract: A distributed power system including multiple DC power sources and multiple power modules. The power modules include inputs coupled respectively to the DC power sources and outputs coupled in series to form a serial string. An inverter is coupled to the serial string. The inverter converts power input from the serial string to output power. A signaling mechanism between the inverter and the power module is adapted for controlling operation of the power modules.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: March 7, 2017
    Assignee: Solaredge Technologies Ltd.
    Inventors: Meir Adest, Guy Sella, Lior Handelsman, Yoav Galin, Amir Fishelov, Meir Gazit, Yaron Binder
  • Patent number: 9564882
    Abstract: A voltage level shifting circuit with an input terminal and an output terminal. The level shifting circuit has a field-effect transistor (FET) switch with a gate attached to the input terminal, a drain attached to the output terminal and a source attached to a current changing mechanism. The current changing mechanism includes a current mirror circuit having an output connected between the source and an electrical earth. The output of the current mirror circuit is preferably adapted to change a current flowing between the drain and the source based on an input voltage applied to the gate.
    Type: Grant
    Filed: November 27, 2015
    Date of Patent: February 7, 2017
    Assignee: Solaredge Technologies Ltd.
    Inventor: Meir Gazit
  • Patent number: 9548619
    Abstract: A method to control storage into and depletion from multiple energy storage devices. The method enables an operative connection between the energy storage devices and respective power converters. The energy storage devices are connectible across respective first terminals of the power converters. At the second terminals of the power converter, a common reference is set which may be a current reference or a voltage reference. An energy storage fraction is determined respectively for the energy storage devices. A voltage conversion ratio is maintained individually based on the energy storage fraction. The energy storage devices are stored individually with multiple variable rates of energy storage through the first terminals. The energy storage is complete for the energy storage devices substantially at a common end time responsive to the common reference.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: January 17, 2017
    Assignee: Solaredge Technologies Ltd.
    Inventor: Meir Gazit