Patents by Inventor Melanie M. DeBusk

Melanie M. DeBusk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11872543
    Abstract: A method of manufacturing a methane oxidation catalyst and methane oxidation catalysts formed by the method are provided. The method includes providing a palladium (Pd)-based catalyst including Pd dispersed onto a support. A magnesium (Mg) precursor is introduced to the Pd-based catalyst by one of ion exchange or incipient wetness impregnation. After introducing the magnesium precursor to the Pd-based catalyst, the catalyst is dried and subjected to a final heat treatment that includes hydrothermal calcination. A method of methane oxidation in a lean exhaust environment via the methane oxidation catalyst is also provided.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: January 16, 2024
    Assignee: UT-BATTELLE, LLC
    Inventors: Melanie M. Debusk, Sreshtha Sinha Majumdar, Josh A. Pihl
  • Publication number: 20220362747
    Abstract: A method of manufacturing a methane oxidation catalyst and methane oxidation catalysts formed by the method are provided. The method includes providing a palladium (Pd)-based catalyst including Pd dispersed onto a support. A magnesium (Mg) precursor is introduced to the Pd-based catalyst by one of ion exchange or incipient wetness impregnation. After introducing the magnesium precursor to the Pd-based catalyst, the catalyst is dried and subjected to a final heat treatment that includes hydrothermal calcination. A method of methane oxidation in a lean exhaust environment via the methane oxidation catalyst is also provided.
    Type: Application
    Filed: May 9, 2022
    Publication date: November 17, 2022
    Inventors: Melanie M. Debusk, Sreshtha Sinha Majumdar, Josh A. Pihl
  • Patent number: 8999168
    Abstract: A system and method for the extraction of americium from radioactive waste solutions. The method includes the transfer of highly oxidized americium from an acidic aqueous feed solution through an immobilized liquid membrane to an organic receiving solvent, for example tributyl phosphate. The immobilized liquid membrane includes porous support and separating layers loaded with tributyl phosphate. The extracted solution is subsequently stripped of americium and recycled at the immobilized liquid membrane as neat tributyl phosphate for the continuous extraction of americium. The sequestered americium can be used as a nuclear fuel, a nuclear fuel component or a radiation source, and the remaining constituent elements in the aqueous feed solution can be stored in glassified waste forms substantially free of americium.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: April 7, 2015
    Assignee: UT-Battelle, LLC
    Inventors: Ramesh R. Bhave, Melanie M. DeBusk, Guillermo D. DelCul, Laetitia H. Delmau, Chaitanya K. Narula
  • Publication number: 20120103900
    Abstract: A system and method for the extraction of americium from radioactive waste solutions. The method includes the transfer of highly oxidized americium from an acidic aqueous feed solution through an immobilized liquid membrane to an organic receiving solvent, for example tributyl phosphate. The immobilized liquid membrane includes porous support and separating layers loaded with tributyl phosphate. The extracted solution is subsequently stripped of americium and recycled at the immobilized liquid membrane as neat tributyl phosphate for the continuous extraction of americium. The sequestered americium can be used as a nuclear fuel, a nuclear fuel component or a radiation source, and the remaining constituent elements in the aqueous feed solution can be stored in glassified waste forms substantially free of americium.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 3, 2012
    Applicant: UT-BATTELLE, LLC
    Inventors: Ramesh R. Bhave, Melanie M. DeBusk, Guillermo D. DelCul, Laetitia H. Delmau, Chaitanya K. Narula