Patents by Inventor Meng-Chia Lee

Meng-Chia Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145596
    Abstract: A device includes a fin extending from a semiconductor substrate; a gate stack over the fin; a first spacer on a sidewall of the gate stack; a source/drain region in the fin adjacent the first spacer; an inter-layer dielectric layer (ILD) extending over the gate stack, the first spacer, and the source/drain region, the ILD having a first portion and a second portion, wherein the second portion of the ILD is closer to the gate stack than the first portion of the ILD; a contact plug extending through the ILD and contacting the source/drain region; a second spacer on a sidewall of the contact plug; and an air gap between the first spacer and the second spacer, wherein the first portion of the ILD extends across the air gap and physically contacts the second spacer, wherein the first portion of the ILD seals the air gap.
    Type: Application
    Filed: January 2, 2024
    Publication date: May 2, 2024
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Kai-Hsuan Lee, I-Hsieh Wong, Cheng-Yu Yang, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo, Syun-Ming Jang, Meng-Han Chou
  • Patent number: 11955439
    Abstract: A semiconductor package includes a semiconductor die, a redistribution structure and connective terminals. The redistribution structure is disposed on the semiconductor die and includes a first metallization tier disposed in between a pair of dielectric layers. The first metallization tier includes routing conductive traces electrically connected to the semiconductor die and a shielding plate electrically insulated from the semiconductor die. The connective terminals include dummy connective terminals and active connective terminals. The dummy connective terminals are disposed on the redistribution structure and are electrically connected to the shielding plate. The active connective terminals are disposed on the redistribution structure and are electrically connected to the routing conductive traces. Vertical projections of the dummy connective terminals fall on the shielding plate.
    Type: Grant
    Filed: January 17, 2023
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-Cheng Wu, Chien-Chia Chiu, Cheng-Hsien Hsieh, Li-Han Hsu, Meng-Tsan Lee, Tsung-Shu Lin
  • Publication number: 20240071947
    Abstract: A semiconductor package including a ring structure with one or more indents and a method of forming are provided. The semiconductor package may include a substrate, a first package component bonded to the substrate, wherein the first package component may include a first semiconductor die, a ring structure attached to the substrate, wherein the ring structure may encircle the first package component in a top view, and a lid structure attached to the ring structure. The ring structure may include a first segment, extending along a first edge of the substrate, and a second segment, extending along a second edge of the substrate. The first segment and the second segment may meet at a first corner of the ring structure, and a first indent of the ring structure may be disposed at the first corner of the ring structure.
    Type: Application
    Filed: August 30, 2022
    Publication date: February 29, 2024
    Inventors: Yu-Ling Tsai, Lai Wei Chih, Meng-Tsan Lee, Hung-Pin Chang, Li-Han Hsu, Chien-Chia Chiu, Cheng-Hung Lin
  • Publication number: 20240047529
    Abstract: GaN devices with a modified heterojunction structure and methods of making thereof are described. The GaN device comprises a heterojunction structure modified to include one or more deactivated regions. The heterojunction structure of the deactivated regions has different structural configurations than that of the as-grown heterojunction structure. The locally confined structural alteration of the heterojunction structure weakens or prohibits 2DEG formation in the deactivated regions. Moreover, the amount of net charges mapped to a field plate positioned above the heterojunction structure can be locally reduced or eliminated. Consequently, the electric field present between the heterojunction structure and the field plate can be reduced.
    Type: Application
    Filed: August 31, 2022
    Publication date: February 8, 2024
    Inventors: DONG SEUP LEE, CHANG SOO SUH, YOGANAND SARIPALLI, MENG-CHIA LEE, JUNGWOO JOH, JAMES TEHERANI, SANDEEP BAHL
  • Patent number: 11670706
    Abstract: In a general aspect, method of producing an insulated-gate bipolar transistor (IGBT) device can include forming a termination structure in an inactive region. The inactive region at least partial surround an active region. The method can also include forming a trench extending along a longitudinal axis in the active region. A first mesa can define a first sidewall of the trench, and a second mesa can define a second sidewall of the trench. The first mesa and the second mesa can be parallel with the trench. The method can further include forming, in at least a portion of the first mesa, an active segment of the IGBT device, and, forming, in at least a portion of the second mesa, an inactive segment of the IGBT device.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: June 6, 2023
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Meng-Chia Lee, Ralph N. Wall, Mingjiao Liu, Shamsul Arefin Khan, Gordon M. Grivna
  • Publication number: 20230101610
    Abstract: An integrated circuit includes an epitaxial layer over a semiconductor substrate. The epitaxial layer has a first conductivity type and a top surface. First, second and third trenches are located in the epitaxial layer. The trenches respectively include first, second and third field plates. First and second body members are located within the epitaxial layer and have a different second conductivity type. The first body member is located between the first and second trenches, and the second body member is located between the second and third trenches. The first body member extends a first distance between the top surface and the substrate, and the second body member extends a lesser second distance between the top surface and the substrate.
    Type: Application
    Filed: September 30, 2021
    Publication date: March 30, 2023
    Inventors: Meng-Chia LEE, Sunglyong KIM, Seetharaman SRIDHAR, Sameer PENDHARKAR
  • Publication number: 20230087151
    Abstract: A trench gate metal oxide semiconductor (MOSFET) device includes a substrate with a semiconductor surface layer doped a first conductivity type. At least one trench gate MOSFET cell is located in or over the semiconductor surface layer, and includes a body region in the semiconductor surface layer doped a second conductivity type, and a source region on top of the body region doped the first conductivity type. A trench extends down from a top side of the semiconductor surface layer, the trench abutting the body region and being lined with a dielectric material. A field plate that includes polysilicon is located in the trench, and a gate electrode is located over the field plate. The field plate has a bottom portion, a middle portion, and a top portion, wherein the bottom portion is narrower than the middle portion, and the middle portion is narrower than the top portion.
    Type: Application
    Filed: October 15, 2021
    Publication date: March 23, 2023
    Inventors: Thomas Grebs, Meng-Chia Lee, Hong Yang, Ya ping Chen, Sunglyong Kim
  • Patent number: 11456381
    Abstract: Described examples include an integrated circuit having a semiconductor substrate. The integrated circuit has a transistor that includes a buried layer having within the substrate, the buried layer defining a drift region between the buried layer and the top surface and a body region in the substrate extending from the buried layer to the surface of the substrate. The transistor also having a source formed in the body region, a drain extending from the buried layer to the surface of the substrate, a drift well extending from the buried layer toward the top surface and extending from the body region to the drain, a drift surface layer located between the drift well and the top, and a gate proximate to the surface of the substrate at the body region.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: September 27, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Meng-Chia Lee, Sunglyong Kim, Seetharaman Sridhar, Sameer Pendharkar
  • Publication number: 20220223731
    Abstract: A semiconductor device includes first, second and third trenches formed in a semiconductor layer having a first conductivity type. Each trench includes a corresponding field plate and a corresponding gate over each field plate. A first body region having a second opposite conductivity type is between the first and second gates, and a second body region having the second conductivity type is located between the second and third gates. A first source region is located over the first body region and a second source region is located over the second body region, the first and second source regions having the first conductivity type. A first gate bus is conductively connected to the first gate and a second gate bus is conductively connected to the second gate, the first gate bus conductively isolated from the second gate bus.
    Type: Application
    Filed: January 13, 2021
    Publication date: July 14, 2022
    Inventors: Sunglyong KIM, Seetharaman SRIDHAR, Meng-Chia LEE, Thomas Eugene GREBS, Hong YANG
  • Publication number: 20220190158
    Abstract: Described examples include an integrated circuit having a semiconductor substrate. The integrated circuit has a transistor that includes a buried layer having within the substrate, the buried layer defining a drift region between the buried layer and the top surface and a body region in the substrate extending from the buried layer to the surface of the substrate. The transistor also having a source formed in the body region, a drain extending from the buried layer to the surface of the substrate, a drift well extending from the buried layer toward the top surface and extending from the body region to the drain, a drift surface layer located between the drift well and the top, and a gate proximate to the surface of the substrate at the body region.
    Type: Application
    Filed: December 16, 2020
    Publication date: June 16, 2022
    Inventors: Meng-Chia Lee, Sunglyong Kim, Seetharaman Sridhar, Sameer Pendharkar
  • Patent number: 11056581
    Abstract: In a general aspect, an insulated gate bipolar transistor (IGBT) device can include an active region, an inactive region and a trench extending along a longitudinal axis in the active region. The IGBT device can also include a first mesa defined by a first sidewall of the trench and in parallel with the trench and a second mesa defined by a second sidewall of the trench and in parallel with the trench. The first mesa can include at least one active segment of the IGBT device and the second mesa can include at least one inactive segment of the IGBT device.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: July 6, 2021
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Mingjiao Liu, Shamsul Arefin Khan, Gordon M. Grivna, Meng-Chia Lee, Ralph N. Wall
  • Publication number: 20200350424
    Abstract: In a general aspect, method of producing an insulated-gate bipolar transistor (IGBT) device can include forming a termination structure in an inactive region. The inactive region at least partial surround an active region. The method can also include forming a trench extending along a longitudinal axis in the active region. A first mesa can define a first sidewall of the trench, and a second mesa can define a second sidewall of the trench. The first mesa and the second mesa can be parallel with the trench. The method can further include forming, in at least a portion of the first mesa, an active segment of the IGBT device, and, forming, in at least a portion of the second mesa, an inactive segment of the IGBT device.
    Type: Application
    Filed: July 17, 2020
    Publication date: November 5, 2020
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Meng-Chia LEE, Ralph N. WALL, Mingjiao LIU, Shamsul Arefin KHAN, Gordon M. GRIVNA
  • Patent number: 10727326
    Abstract: In a general aspect, an insulated gate bipolar transistor (IGBT) device can include an active region, an inactive region and a trench extending along a longitudinal axis in the active region. The IGBT can also include a first mesa defining a first sidewall of the trench and in parallel with the trench and a second mesa defining a second sidewall of the trench and in parallel with the trench. At least a portion of the first mesa can include an active segment of the IGBT device, and at least a portion of the second mesa can include an inactive segment of the IGBT device.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: July 28, 2020
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Meng-Chia Lee, Ralph N. Wall, Mingjiao Liu, Shamsul Arefin Khan, Gordon M. Grivna
  • Patent number: 10546948
    Abstract: An electronic device can include a semiconductor substrate having a front side and a back side; an emitter region closer to the front side than to the back side; a trench extending from a back side surface into the semiconductor substrate, wherein the trench has a sidewall and a bottom; a collector region along the back side surface and spaced apart from the bottom of the trench; a field-stop region lying along the bottom and at least a portion of the sidewall of the trench, wherein the emitter and field-stop regions have one conductivity type, and the collector region has the opposite conductivity type; and a collector terminal along the back side and including a metal-containing material, wherein the collector terminal contacts the collector region and is isolated from the field-stop region. A process of forming the electronic device does not require complex or marginal processing operations.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: January 28, 2020
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Meng-Chia Lee, Ralph N. Wall
  • Patent number: 10388726
    Abstract: Systems and methods herein are directed towards semiconductor devices and methods of manufacture thereof, including the formation of a plurality of passive trenches that act as a single passive trench and may be connected to gate electrodes and/or emitters in various embodiments.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: August 20, 2019
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Meng-Chia Lee, Ralph N. Wall
  • Publication number: 20190123136
    Abstract: Systems and methods herein are directed towards semiconductor devices and methods of manufacture thereof, including the formation of a plurality of passive trenches that act as a single passive trench and may be connected to gate electrodes and/or emitters in various embodiments.
    Type: Application
    Filed: October 24, 2017
    Publication date: April 25, 2019
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Meng-Chia LEE, Ralph N. WALL
  • Publication number: 20190058055
    Abstract: In a general aspect, an insulated gate bipolar transistor (IGBT) device can include an active region, an inactive region and a trench extending along a longitudinal axis in the active region. The IGBT can also include a first mesa defining a first sidewall of the trench and in parallel with the trench and a second mesa defining a second sidewall of the trench and in parallel with the trench. At least a portion of the first mesa can include an active segment of the IGBT device, and at least a portion of the second mesa can include an inactive segment of the IGBT device.
    Type: Application
    Filed: January 31, 2018
    Publication date: February 21, 2019
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Meng-Chia LEE, Ralph N. WALL, Mingjiao LIU, Shamsul Arefin KHAN, Gordon M. GRIVNA
  • Publication number: 20190058056
    Abstract: In a general aspect, an insulated gate bipolar transistor (IGBT) device can include an active region, an inactive region and a trench extending along a longitudinal axis in the active region. The IGBT device can also include a first mesa defined by a first sidewall of the trench and in parallel with the trench and a second mesa defined by a second sidewall of the trench and in parallel with the trench. The first mesa can include at least one active segment of the IGBT device and the second mesa can include at least one inactive segment of the IGBT device.
    Type: Application
    Filed: January 31, 2018
    Publication date: February 21, 2019
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Mingjiao Liu, Shamsul Arefin Khan, Gordon M. Grivna, Meng-Chia Lee, Ralph N. Wall
  • Patent number: 10128330
    Abstract: A semiconductor device having a novel buried junction architecture. The semiconductor device may have three terminals and a drift region between two of the terminals. The drift region includes an upper drift layer, a lower drift layer, and a buried junction layer between the upper and lower drift layers, wherein the upper and lower drift layers have a first type of doping. The buried junction layer comprises an interspersed pattern of a first material and a second material, the first material having a second type of doping opposite the first type of doping and the second material having the first type of doping and having a different doping concentration than the upper and lower drift layers.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: November 13, 2018
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Ralph N. Wall, Meng-Chia Lee