Patents by Inventor Meng-Wei Kuo

Meng-Wei Kuo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11653494
    Abstract: Some embodiments include apparatuses and methods having a source material, a dielectric material over the source material, a select gate material over the dielectric material, a memory cell stack over the select gate material, a conductive plug located in an opening of the dielectric material and contacting a portion of the source material, and a channel material extending through the memory cell stack and the select gate material and contacting the conductive plug.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: May 16, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Fatma Arzum Simsek-Ege, Krishna K. Parat, Luan C. Tran, Meng-Wei Kuo, Yushi Hu
  • Publication number: 20230019097
    Abstract: Some embodiments include a method of forming vertically-stacked memory cells. An opening is formed through a stack of alternating insulative and conductive levels. Cavities are formed to extend into the conductive levels. Regions of the insulative levels remain as ledges which separate adjacent cavities from one another. Material is removed from the ledges to thin the ledges, and then charge-blocking dielectric and charge-storage structures are formed within the cavities. Some embodiments include an integrated structure having a stack of alternating insulative levels and conductive levels. Cavities extend into the conductive levels. Ledges of the insulative levels separate adjacent cavities from one another. The ledges are thinned relative to regions of the insulative levels not encompassed by the ledges. Charge-blocking dielectric and charge-storage structures are within the cavities.
    Type: Application
    Filed: September 16, 2022
    Publication date: January 19, 2023
    Applicant: Micron Technology, Inc.
    Inventors: Fatma Arzum Simsek-Ege, Meng-Wei Kuo, John D. Hopkins
  • Publication number: 20220415908
    Abstract: Systems, apparatuses and methods may provide for memory cell technology comprising a control gate, a conductive channel, and a charge storage structure coupled to the control gate and the conductive channel, wherein the charge storage structure includes a polysilicon layer and a metal layer. In one example, the metal layer includes titanium nitride or other high effective work function metal.
    Type: Application
    Filed: July 14, 2021
    Publication date: December 29, 2022
    Inventors: Guangyu Huang, Dipanjan Basu, Meng-Wei Kuo, Randy Koval, Henok Mebrahtu, Minsheng Wang, Jie Li, Fei Wang, Qun Gao, Xingui Zhang, Guanjie Li
  • Patent number: 11482534
    Abstract: Some embodiments include a method of forming vertically-stacked memory cells. An opening is formed through a stack of alternating insulative and conductive levels. Cavities are formed to extend into the conductive levels. Regions of the insulative levels remain as ledges which separate adjacent cavities from one another. Material is removed from the ledges to thin the ledges, and then charge-blocking dielectric and charge-storage structures are formed within the cavities. Some embodiments include an integrated structure having a stack of alternating insulative levels and conductive levels. Cavities extend into the conductive levels. Ledges of the insulative levels separate adjacent cavities from one another. The ledges are thinned relative to regions of the insulative levels not encompassed by the ledges. Charge-blocking dielectric and charge-storage structures are within the cavities.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: October 25, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Fatma Arzum Simsek-Ege, Meng-Wei Kuo, John D. Hopkins
  • Patent number: 10790290
    Abstract: A 3D NAND storage device includes a plurality of layers containing doped semiconductor material interleaved with a plurality of layers of dielectric material. Each of the pillars forming the 3D NAND storage device includes a plurality of memory cells and a drain-end select gate (SGD). The pillars are separated by a hollow channel in which a plurality of film layers, including at least a lower film layer and an upper film layer have been deposited. The systems and methods described herein remove at least the upper film layer proximate the SGD while maintaining the film layers proximate the memory cells. Such an arrangement beneficially permits tailoring the film layers proximate the SGD prior to depositing the channel film layer in the hollow channel. The systems and methods described herein permit the deposition of a continuous channel film layer proximate both the memory cells and the SGD.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: September 29, 2020
    Assignee: Intel Corporation
    Inventors: David A. Daycock, Purnima Narayanan, John Hopkins, Guoxing Duan, Barbara L. Casey, Christopher J. Larsen, Meng-Wei Kuo, Qian Tao
  • Publication number: 20200258910
    Abstract: Some embodiments include a method of forming vertically-stacked memory cells. An opening is formed through a stack of alternating insulative and conductive levels. Cavities are formed to extend into the conductive levels. Regions of the insulative levels remain as ledges which separate adjacent cavities from one another. Material is removed from the ledges to thin the ledges, and then charge-blocking dielectric and charge-storage structures are formed within the cavities. Some embodiments include an integrated structure having a stack of alternating insulative levels and conductive levels. Cavities extend into the conductive levels. Ledges of the insulative levels separate adjacent cavities from one another. The ledges are thinned relative to regions of the insulative levels not encompassed by the ledges. Charge-blocking dielectric and charge-storage structures are within the cavities.
    Type: Application
    Filed: April 28, 2020
    Publication date: August 13, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Fatma Arzum Simsek-Ege, Meng-Wei Kuo, John D. Hopkins
  • Patent number: 10672785
    Abstract: Some embodiments include a method of forming vertically-stacked memory cells. An opening is formed through a stack of alternating insulative and conductive levels. Cavities are formed to extend into the conductive levels. Regions of the insulative levels remain as ledges which separate adjacent cavities from one another. Material is removed from the ledges to thin the ledges, and then charge-blocking dielectric and charge-storage structures are formed within the cavities. Some embodiments include an integrated structure having a stack of alternating insulative levels and conductive levels. Cavities extend into the conductive levels. Ledges of the insulative levels separate adjacent cavities from one another. The ledges are thinned relative to regions of the insulative levels not encompassed by the ledges. Charge-blocking dielectric and charge-storage structures are within the cavities.
    Type: Grant
    Filed: April 6, 2015
    Date of Patent: June 2, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Fatma Arzum Simsek-Ege, Meng-Wei Kuo, John D. Hopkins
  • Publication number: 20200135748
    Abstract: Some embodiments include apparatuses and methods having a source material, a dielectric material over the source material, a select gate material over the dielectric material, a memory cell stack over the select gate material, a conductive plug located in an opening of the dielectric material and contacting a portion of the source material, and a channel material extending through the memory cell stack and the select gate material and contacting the conductive plug.
    Type: Application
    Filed: December 23, 2019
    Publication date: April 30, 2020
    Inventors: Fatma Arzum Simsek-Ege, Krishna K. Parat, Luan C. Tran, Meng-Wei Kuo, Yushi Hu
  • Patent number: 10622450
    Abstract: A 3D memory structure including a modified floating gate and dielectric layer geometry is described. In embodiments, a memory cell includes a channel region and a floating gate where a length of the floating gate along a direction of the channel region is substantially longer than a length of the floating gate along an orthogonal direction along the channel region. A control gate adjacent to the floating gate extends at least as long as the control gate along the direction of the channel region and includes a tapered edge extending away from the channel region towards the control gate. In embodiments, a dielectric layer between the control gate and the floating gate may follow the tapered edge along the floating gate and form a discrete region proximate to the floating gate to at least partially insulate the floating gate from an adjacent memory cell. Other embodiments are disclosed and claimed.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: April 14, 2020
    Assignee: Intel Corporation
    Inventors: Randy Koval, Srikant Jayanti, Hiroyuki Sanda, Meng-Wei Kuo, Srivardhan Gowda, Krishna Parat
  • Patent number: 10515972
    Abstract: Some embodiments include apparatuses and methods having a source material, a dielectric material over the source material, a select gate material over the dielectric material, a memory cell stack over the select gate material, a conductive plug located in an opening of the dielectric material and contacting a portion of the source material, and a channel material extending through the memory cell stack and the select gate material and contacting the conductive plug.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: December 24, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Fatma Arzum Simsek-Ege, Krishna K. Parat, Luan C. Tran, Meng-Wei Kuo, Yushi Hu
  • Publication number: 20190103410
    Abstract: A 3D NAND storage device includes a plurality of layers containing doped semiconductor material interleaved with a plurality of layers of dielectric material. Each of the pillars forming the 3D NAND storage device includes a plurality of memory cells and a drain-end select gate (SGD). The pillars are separated by a hollow channel in which a plurality of film layers, including at least a lower film layer and an upper film layer have been deposited. The systems and methods described herein remove at least the upper film layer proximate the SGD while maintaining the film layers proximate the memory cells. Such an arrangement beneficially permits tailoring the film layers proximate the SGD prior to depositing the channel film layer in the hollow channel. The systems and methods described herein permit the deposition of a continuous channel film layer proximate both the memory cells and the SGD.
    Type: Application
    Filed: September 29, 2017
    Publication date: April 4, 2019
    Applicant: INTEL CORPORATION
    Inventors: DAVID A. DAYCOCK, PURNIMA NARAYANAN, JOHN HOPKINS, GUOXING DUAN, BARBARA L. CASEY, CHRISTOPHER J. LARSEN, MENG-WEI KUO, QIAN TAO
  • Publication number: 20190043960
    Abstract: A 3D memory structure including a modified floating gate and dielectric layer geometry is described. In embodiments, a memory cell includes a channel region and a floating gate where a length of the floating gate along a direction of the channel region is substantially longer than a length of the floating gate along an orthogonal direction along the channel region. A control gate adjacent to the floating gate extends at least as long as the control gate along the direction of the channel region and includes a tapered edge extending away from the channel region towards the control gate. In embodiments, a dielectric layer between the control gate and the floating gate may follow the tapered edge along the floating gate and form a discrete region proximate to the floating gate to at least partially insulate the floating gate from an adjacent memory cell. Other embodiments are disclosed and claimed.
    Type: Application
    Filed: June 28, 2018
    Publication date: February 7, 2019
    Inventors: Randy Koval, Srikant Jayanti, Hiroyuki Sanda, Meng-Wei Kuo, Srivardhan Gowda, Krishna Parat
  • Publication number: 20170373075
    Abstract: Some embodiments include apparatuses and methods having a source material, a dielectric material over the source material, a select gate material over the dielectric material, a memory cell stack over the select gate material, a conductive plug located in an opening of the dielectric material and contacting a portion of the source material, and a channel material extending through the memory cell stack and the select gate material and contacting the conductive plug.
    Type: Application
    Filed: August 24, 2017
    Publication date: December 28, 2017
    Inventors: Fatma Arzum Simsek-Ege, Krishna K. Parat, Luan C. Tran, Meng-Wei Kuo, Yushi Hu
  • Patent number: 9780102
    Abstract: Some embodiments include apparatuses and methods having a source material, a dielectric material over the source material, a select gate material over the dielectric material, a memory cell stack over the select gate material, a conductive plug located in an opening of the dielectric material and contacting a portion of the source material, and a channel material extending through the memory cell stack and the select gate material and contacting the conductive plug.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: October 3, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Fatma Arzum Simsek-Ege, Krishna K. Parat, Luan C. Tran, Meng-Wei Kuo, Yushi Hu
  • Publication number: 20160293623
    Abstract: Some embodiments include a method of forming vertically-stacked memory cells. An opening is formed through a stack of alternating insulative and conductive levels. Cavities are formed to extend into the conductive levels. Regions of the insulative levels remain as ledges which separate adjacent cavities from one another. Material is removed from the ledges to thin the ledges, and then charge-blocking dielectric and charge-storage structures are formed within the cavities. Some embodiments include an integrated structure having a stack of alternating insulative levels and conductive levels. Cavities extend into the conductive levels. Ledges of the insulative levels separate adjacent cavities from one another. The ledges are thinned relative to regions of the insulative levels not encompassed by the ledges. Charge-blocking dielectric and charge-storage structures are within the cavities.
    Type: Application
    Filed: April 6, 2015
    Publication date: October 6, 2016
    Inventors: Fatma Arzum Simsek-Ege, Meng-Wei Kuo, John D. Hopkins
  • Publication number: 20160133638
    Abstract: Some embodiments include apparatuses and methods having a source material, a dielectric material over the source material, a select gate material over the dielectric material, a memory cell stack over the select gate material, a conductive plug located in an opening of the dielectric material and contacting a portion of the source material, and a channel material extending through the memory cell stack and the select gate material and contacting the conductive plug.
    Type: Application
    Filed: November 7, 2014
    Publication date: May 12, 2016
    Inventors: Fatma Arzum Simsek-Ege, Krishna K. Parat, Luan C. Tran, Meng-Wei Kuo, Yushi Hu
  • Patent number: 7413912
    Abstract: A microsensor fabricated with a ferroelectric material and a fabrication method therefor are provided. The microsensor includes a support, an insulating layer on the support, a first electrode on the insulating layer, a ferroelectric layer having at least a metal on the insulating layer and the first electrode, and at least a second electrode on the ferroelectric layer.
    Type: Grant
    Filed: May 11, 2005
    Date of Patent: August 19, 2008
    Assignee: Instrument Technology Research Center, National Applied Research Laboratories
    Inventors: Jyh-Shin Chen, Der-Chi Shye, Meng-Wei Kuo, Ming-Hua Shiao, Jiann-Shium Kao, Huang-Chung Cheng, Bi-Shiou Chiou
  • Publication number: 20060258040
    Abstract: A microsensor fabricated with a ferroelectric material and a fabrication method therefor are provided. The microsensor includes a support, an insulating layer on the support, a first electrode on the insulating layer, a ferroelectric layer having at least a metal on the insulating layer and the first electrode, and at least a second electrode on the ferroelectric layer.
    Type: Application
    Filed: May 11, 2005
    Publication date: November 16, 2006
    Inventors: Jyh-Shin Chen, Der-Chi Shye, Meng-Wei Kuo, Ming-Hua Shiao, Jiann-Shium Kao, Huang-Chung Cheng, Bi-Shiou Chiou