Patents by Inventor Menghan WEI

Menghan WEI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230417943
    Abstract: A method of locating a failure of coal-rock-concrete based on vector features of a near-field electromagnetic field is provided. The method senses and records the real electromagnetic field vector information in space by arranging a triaxial electromagnetic sensor array around a coal-rock-concrete body, and realizes the localization of the failure areas of the coal-rock-concrete body by establishing an electromagnetic radiation localization model for the failures of the coal-rock concrete body.
    Type: Application
    Filed: September 8, 2022
    Publication date: December 28, 2023
    Applicant: University of Science and Technology Beijing
    Inventors: Dazhao SONG, Yuqing CHENG, Xueqiu HE, Menghan WEI, Yongjun TONG
  • Patent number: 11567230
    Abstract: A direction-finding and positioning system of electromagnetic emission of coal or rock fracture includes a three-axis electromagnetic sensor array, a signal acquisition module and a direction-finding and positioning terminal; the three-axis electromagnetic sensor array is composed of at least four three-axis electromagnetic sensors configured to synchronously sense magnetic field strength in three-axis direction based on a tunnel magneto resistance technology, and obtain a real magnetic field vector in space by measuring; the signal acquisition module is configured to acquire magnetic field vector variable information of multiple measuring points in real-time, and after extracting magnetic field vector variable parameters, transmitting the magnetic field vector variable parameters to the direction-finding and positioning terminal; the direction-finding and positioning terminal is configured to perform direction-finding and positioning calculations according to the magnetic field vector variable parameters rec
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: January 31, 2023
    Assignee: UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING
    Inventors: Dazhao Song, Xueqiu He, Menghan Wei
  • Patent number: 11397236
    Abstract: A method of locating a coal-rock main fracture by an electromagnetic radiation from a precursor of a coal-rock dynamic disaster is provided. At least four groups of three-component electromagnetic sensors are arranged in the underground tunnels, and each group of sensors includes three directive antennas for receiving electromagnetic signals orthogonal to each other. The electromagnetic signals are collected by a monitoring host. The signals are ensured to be received by different sensors synchronously via an atomic clock. The direction of the magnetic field line is determined by performing a vector superposition on strengths of the three-component electromagnetic signals of each group of sensors. The planes of electromagnetic wave propagation perpendicular to the direction of the magnetic field line are determined accordingly. The location of the coal-rock fracture is determined by the intersection point of the planes of electromagnetic wave propagation determined by the multiple groups of sensors.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: July 26, 2022
    Assignees: UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING, ZHONG-AN ACADEMY OF SAFETY ENGINEERING
    Inventors: Dazhao Song, Xueqiu He, Zhenlei Li, Menghan Wei, Quan Lou, Anhu Wang
  • Publication number: 20190277942
    Abstract: A method of locating a coal-rock main fracture by an electromagnetic radiation from a precursor of a coal-rock dynamic disaster is provided. At least four groups of three-component electromagnetic sensors are arranged in the underground tunnels, and each group of sensors includes three directive antennas for receiving electromagnetic signals orthogonal to each other. The electromagnetic signals are collected by a monitoring host. The signals are ensured to be received by different sensors synchronously via an atomic clock. The direction of the magnetic field line is determined by performing a vector superposition on strengths of the three-component electromagnetic signals of each group of sensors. The planes of electromagnetic wave propagation perpendicular to the direction of the magnetic field line are determined accordingly. The location of the coal-rock fracture is determined by the intersection point of the planes of electromagnetic wave propagation determined by the multiple groups of sensors.
    Type: Application
    Filed: March 30, 2018
    Publication date: September 12, 2019
    Applicants: University of Science and Technology Beijing, Zhong-an Academy of safety Engineering
    Inventors: Dazhao SONG, Xueqiu HE, Zhenlei LI, Menghan WEI, Quan LOU, Anhu WANG