Patents by Inventor Mengyuan Wang

Mengyuan Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11830858
    Abstract: The present disclosure provides a full-color COB device, including a substrate, where a light-emitting region is provided on an upper surface of the substrate, the light-emitting region includes a white light-emitting region and an atmosphere lighting region, the atmosphere lighting region is a closed ring-shaped structure, and the atmosphere lighting region encloses the white light-emitting region. A plurality of warm light-emitting modules and a plurality of cold light-emitting modules are disposed in the white light-emitting region, and the warm light-emitting module and the cold light-emitting module are disposed in a staggered manner. A plurality of red light-emitting modules, a plurality of green light-emitting modules, and a plurality of blue light-emitting modules are disposed in the atmosphere lighting region, and the red light-emitting modules, the green light-emitting modules, and the blue light-emitting modules are disposed in a staggered manner.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: November 28, 2023
    Assignee: Foshan Evercore Optoelectronic Technology Co., Ltd.
    Inventors: Mengyuan Wang, Weiqiang Zeng, Tingbo Dong, Chaoming Huang
  • Publication number: 20230299054
    Abstract: The present disclosure provides a full-color COB device, including a substrate, where a light-emitting region is provided on an upper surface of the substrate, the light-emitting region includes a white light-emitting region and an atmosphere lighting region, the atmosphere lighting region is a closed ring-shaped structure, and the atmosphere lighting region encloses the white light-emitting region. A plurality of warm light-emitting modules and a plurality of cold light-emitting modules are disposed in the white light-emitting region, and the warm light-emitting module and the cold light-emitting module are disposed in a staggered manner. A plurality of red light-emitting modules, a plurality of green light-emitting modules, and a plurality of blue light-emitting modules are disposed in the atmosphere lighting region, and the red light-emitting modules, the green light-emitting modules, and the blue light-emitting modules are disposed in a staggered manner.
    Type: Application
    Filed: March 21, 2022
    Publication date: September 21, 2023
    Inventors: Mengyuan Wang, Weiqiang Zeng, Tingbo Dong, Chaoming Huang
  • Patent number: 7498187
    Abstract: The present invention relates to a method for improving the performance of P-type ohmic contact of gallium nitride LED wafer. Magneto sputtering is used to spray nickel material in nano particles onto the surface of gallium nitride epitaxial layer. The thickness of nickel is between 1 nm to 100 nm. Following that, at least one layer of high work function metal film is deposited onto the surface of the nickel metal layer, and the ratio of the thickness of the nickel metal layer to that of high work function metal film is 1:0.5˜4. Zinc oxide may replace nickel metal layer and high work function metal film. The object of the present invention is to simultaneously reduce the contact impedance of P-type luminous zone and enhance the traverse of electric current, thereby attaining an eventual equilibrium of contact impedance and luminous efficiency and thus increasing the life span of the wafer.
    Type: Grant
    Filed: June 24, 2006
    Date of Patent: March 3, 2009
    Assignee: Podium Photonics (Guangzhou) Ltd.
    Inventors: Mengyuan Wang, Guocong Chen
  • Publication number: 20070254395
    Abstract: The present invention relates to a method for improving the performance of P-type ohmic contact of gallium nitride LED wafer. Magneto sputtering is used to spray nickel material in nano particles onto the surface of gallium nitride epitaxial layer. The thickness of nickel is between 1 nm to 100 nm. Following that, at least one layer of high work function metal film is deposited onto the surface of the nickel metal layer, and the ratio of the thickness of the nickel metal layer to that of high work function metal film is 1:0.5˜4. Zinc oxide may replace nickel metal layer and high work function metal film. The object of the present invention is to simultaneously reduce the contact impedance of P-type luminous zone and enhance the traverse of electric current, thereby attaining an eventual equilibrium of contact impedance and luminous efficiency and thus increasing the life span of the wafer.
    Type: Application
    Filed: June 24, 2006
    Publication date: November 1, 2007
    Applicant: PODIUM PHOTONICS (GUANGZHOU) LTD.
    Inventors: Mengyuan Wang, Guocong Chen