Patents by Inventor Michael A. Epstein

Michael A. Epstein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200125989
    Abstract: The disclosure relates to training models for identification of events likely to cause discomfort to passengers of autonomous vehicles and for assessment of overall ride quality of autonomous vehicle rides. For instance, ride data may be associated with a ride quality value indicative of a level of discomfort and/or a first overall ride quality value indicating an overall ride quality provided by the passenger for the first ride. This ride data may be used to train a model such that the model is configured to, in response to receiving ride data for a second ride as input, output a list of events likely to cause discomfort to a passenger during the second ride and/or such that the model is configured to, in response to receiving second ride data for a second ride as input, output a second overall ride quality value for the second ride.
    Type: Application
    Filed: December 10, 2018
    Publication date: April 23, 2020
    Inventors: Ioan-Alexandru Sucan, Fang Da, Poonam Suryanarayan, Nathaniel Fairfield, Yutaka Leon Suematsu, Omer Baror, Jian Leong, Michael Epstein
  • Publication number: 20200124360
    Abstract: A cross-flow heat exchanger for gas turbine engines which may be utilized to transfer heat from one fluid flow 46 to a second independent fluid flow wherein one of the fluid flows has a high differential inlet pressure and temperature. The heat exchanger has robust construction to inhibit mixing of the fluid flows during a single burst duct event.
    Type: Application
    Filed: August 6, 2019
    Publication date: April 23, 2020
    Inventors: Thomas Kupiszewski, Christopher Charles Glynn, Steven Douglas Johnson, John Andrew Kemme, Mehdi Milani Baladi, Michael Epstein
  • Patent number: 10627815
    Abstract: Aspects of the present disclosure relate to context aware stopping of a vehicle without a driver. As an example, after a passenger has entered the vehicle, the vehicle is maneuvered by one or more processors in an autonomous driving mode towards a destination location along a route. The route is divided into two or more stages. A signal is received by the one or more processors. The signal indicates that the passenger is requesting that the vehicle stop or pull over. In response to the signal, the one or more processors determine a current stage of the route based on a current distance of the vehicle from a pickup location where the passenger entered the vehicle or a current distance of the vehicle from the destination location. The one or more processors then stop the vehicle in accordance with the determined current stage.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: April 21, 2020
    Assignee: Waymo LLC
    Inventors: John Wesley Dyer, Luis Torres, Michael Epstein, Guillaume Dupre, Joshua Seth Herbach
  • Publication number: 20200111370
    Abstract: Aspects of the disclosure provide for controlling an autonomous vehicle to respond to queuing behaviors at pickup or drop-off locations. As an example, a request to pick up or drop off a passenger at a location may be received. The location may be determined to likely have a queue for picking up and dropping off passengers. Based on sensor data received from a perception system, whether a queue exists at the location may be determined. Once it is determined that a queue exists, it may be determined whether to join the queue to avoid inconveniencing other road users. Based on the determination to join the queue, the vehicle may be controlled to join the queue.
    Type: Application
    Filed: October 9, 2018
    Publication date: April 9, 2020
    Inventors: John Wesley Dyer, Michael Epstein
  • Publication number: 20200097007
    Abstract: Aspects of the disclosure provide for reducing inconvenience to other road users caused by stopped autonomous vehicles. As an example, a vehicle having an autonomous driving mode may be stopped at a first location. While the vehicle is stopped, sensor data is received from a perception system of the vehicle. The sensor data may identify a road user. Using the sensor data, a value indicative of a level of inconvenience to the road user caused by stopping the vehicle at the first location may be determined. The vehicle is controlled in the autonomous driving mode to cause the vehicle to move from the first location and in order to reduce the value.
    Type: Application
    Filed: September 25, 2018
    Publication date: March 26, 2020
    Inventors: John Wesley Dyer, Michael Epstein, Ken Hu
  • Patent number: 10579788
    Abstract: Aspects of the disclosure provide systems and methods for recognizing an assigned passenger. For instance, dispatching instructions to pick up a passenger at a pickup location are received. The instructions include authentication information for authenticating a client computing device associated with the passenger. A vehicle is maneuvered in an autonomous driving mode towards the pickup location. The client device is then authenticated. After authentication, a set of pedestrians within a predetermined distance of the vehicle are identified from sensor information generated by a sensor of the vehicle and location information is received over a period of time from the client device. The received location information is used to estimate a velocity of the passenger. This estimated velocity is used to identify a subset of set of pedestrians that is likely to be the passenger. The vehicle is stopped to allow the passenger to enter the vehicle based on the subset.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: March 3, 2020
    Assignee: Waymo LLC
    Inventors: John Wesley Dyer, Luis Torres, Michael Epstein, Yu-Hsin Chen
  • Publication number: 20200021958
    Abstract: The technology relates to actively looking for an assigned passenger prior to a vehicle 100 reaching a pickup location. For instance, information identifying the pickup location and client device information for authenticating the assigned passenger is received. Sensor data is received from a perception system (172) of the vehicle identifying objects in an environment of the vehicle. When the vehicle is within a predetermined distance (represented by distance bar 772) from the pickup location (represented by marker 770), authenticating a client device (420, 430) using the client device information is attempted. When the client device has been authenticated, the sensor data is used to determine whether a pedestrian (750, 752) is within a first threshold distance (D1) of the vehicle.
    Type: Application
    Filed: August 29, 2019
    Publication date: January 16, 2020
    Inventors: Philip Nemec, Renaud-Roland Hubert, Joshua Seth Herbach, Min Li Chan, Michael Epstein, Salil Pandit, John Wesley Dyer, Juliet Rothenberg
  • Patent number: 10535271
    Abstract: The disclosure relates to smart signs or physical markers for facilitating passenger trips for autonomous vehicles. For instance, a physical marker remote from the autonomous vehicles may receive a first notification indicating a request for a trip has been made via a client computing device. The physical marker may determine when the client computing device has reached a physical marker, and in response to the determination, the physical marker may send a second notification to a dispatching server computing device indicating that the client computing device has reached a physical marker. Other aspects of the disclosure relate to various features and uses for the physical marker.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: January 14, 2020
    Assignee: Waymo LLC
    Inventors: John Wesley Dyer, Philip Nemec, Joshua Newby, Michael Epstein
  • Publication number: 20200010905
    Abstract: The present disclosure relates to methods for detecting and targeting genomic rearrangements, in particular gene fusion events, by targeting a DNA molecule of interest with a set or pool of primers, wherein the forward primers and reverse primers produce a PCR amplification product when a genomic rearrangement is present. The present disclosure also relates to methods of bioinformatic analysis to determine whether or not the detection of an amplification product from the selective PCR is actually indicative of the presence of a gene fusion. The present disclosure also related to related methods of diagnosis and treatment of diseases and conditions associated with such genomic rearrangements, in particular cancers, such as lung cancer.
    Type: Application
    Filed: June 18, 2018
    Publication date: January 9, 2020
    Inventors: Samuel Woodhouse, Stefanie Lensing, Tim Forshew, Vincent Plagnol, Matthew Edward Smith, Karen Howarth, Michael Epstein
  • Patent number: 10520941
    Abstract: Aspects of the disclosure relate to controlling a vehicle in an autonomous driving mode. For instance, a first location corresponding to a location where the vehicle is to pick up or drop off a passenger is received. A first cost for the vehicle to reach the first location is determined. A second location based on the first location is identified, and a second cost is determined based on a cost for the vehicle to reach the second location and a cost for the passenger to reach the second location. The first cost is compared to the second cost, and a notification is sent based on the notification. In response to sending the notification, instructions to proceed to the second location are received, and in response to receiving the instructions, the vehicle is controlled in the autonomous driving mode to the second location to pick up or drop off the passenger.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: December 31, 2019
    Assignee: Waymo LLC
    Inventors: Joshua Seth Herbach, Michael Epstein, Mishika Vora, Guillaume Dupre, Kevin Rawlings
  • Publication number: 20190350964
    Abstract: Compounds and their use in modulating the Ras/Raf/MEK/ERK and PI3K/Akt/mTOR signaling pathways to protect normal cells in scenarios such as chemotherapy to kill cancer cells are provided. The compounds inhibit phosphatidylinositol 5-phosphate 4-kinase (PI5P4K) and/or increase phosphoinositide 3-kinase-interacting protein 1 (PIK31P1). Also provided are methods for identifying such compounds, methods of treatment using same and other uses.
    Type: Application
    Filed: December 8, 2017
    Publication date: November 21, 2019
    Inventors: Sang Hyun LEE, Mayumi KITAGAWA, David Michael EPSTEIN
  • Publication number: 20190353495
    Abstract: Aspects of the disclosure relate to generating map data. For instance, data generated by a perception system of a vehicle may be received. This data corresponds to a plurality of observations including observed positions of a passenger of the vehicle as the passenger approached the vehicle at a first location. The data may be used to determine an observed distance traveled by a passenger to reach a vehicle. A road edge distance between an observed position of an observation of the plurality of observations and a nearest road edge to the observed position may be determined. An inconvenience value for the first location may be determined using the observed distance and the road edge distance. The map data is then generated using the inconvenience value.
    Type: Application
    Filed: May 21, 2018
    Publication date: November 21, 2019
    Inventors: John Wesley Dyer, Leonid Yeykelis, Michael Epstein, Salil Pandit
  • Patent number: 10440536
    Abstract: The technology relates to actively looking for an assigned passenger prior to a vehicle reaching a pickup location. For instance, information identifying the pickup location and client device information for authenticating the assigned passenger is received. Sensor data is received from a perception system of the vehicle identifying objects in an environment of the vehicle. When the vehicle is within a predetermined distance of the pickup location, authenticating a client device using the client device information is attempted. When the client device has been authenticated, the sensor data is used to determine whether a pedestrian is within a first threshold distance of the vehicle. When a pedestrian is determined to be within the first threshold distance of the vehicle, the vehicle is stopped prior to reaching the pickup location, to wait for the pedestrian within the first threshold distance of the vehicle to enter the vehicle.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: October 8, 2019
    Assignee: Waymo LLC
    Inventors: Philip Nemec, Renaud-Roland Hubert, Joshua Seth Herbach, Min Li Chan, Michael Epstein, Salil Pandit, John Wesley Dyer, Juliet Rothenberg
  • Patent number: 10421326
    Abstract: A robotic platform may include left and right platforms, a base platform, wheel assemblies, and a tilting suspension. The tilting suspension may include a tilt shaft coupled to the base platform, a crank, suspension arms, and a tilt assembly. The tilt shaft may extend along a substantially vertical tilt axis. The crank may extend substantially perpendicular to the tilt axis and may be coupled to the tilt shaft such that the crank at least partially rotates about the tilt axis along with the tilt shaft. The suspension arms may extend from the crank to the left and right platforms such that rotation of the crank about the tilt axis controls the tilt of the platforms. The tilt assembly may control rotation of the tilt shaft about the tilt axis to control the tilt of the left and right platforms. Various other systems are also disclosed.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: September 24, 2019
    Assignee: Facebook, Inc.
    Inventors: Scott C. Wiley, Michael Epstein
  • Publication number: 20190241978
    Abstract: The present disclosure relates to methods for detecting and targeting genomic rearrangements, in particular gene fusion events, by targeting a DNA molecule of interest with a set or pool of primers, wherein the forward primers and reverse primers produce a PCR amplification product when a genomic rearrangement is present. The present disclosure also relates to methods of bioinformatic analysis to determine whether or not the detection of an amplification product from the selective PCR is actually indicative of the presence of a gene fusion. The present disclosure also related to related methods of diagnosis and treatment of diseases and conditions associated with such genomic rearrangements, in particular cancers, such as lung cancer.
    Type: Application
    Filed: April 19, 2019
    Publication date: August 8, 2019
    Inventors: Samuel Woodhouse, Stefanie Lensing, Tim Forshew, Vincent Plagnol, Matthew Edward Smith, Karen Howarth, Michael Epstein
  • Publication number: 20190241974
    Abstract: The present disclosure relates to methods for detecting and targeting genomic rearrangements, in particular gene fusion events, by targeting a DNA molecule of interest with a set or pool of primers, wherein the forward primers and reverse primers produce a PCR amplification product when a genomic rearrangement is present. The present disclosure also relates to methods of bioinformatic analysis to determine whether or not the detection of an amplification product from the selective PCR is actually indicative of the presence of a gene fusion. The present disclosure also related to related methods of diagnosis and treatment of diseases and conditions associated with such genomic rearrangements, in particular cancers, such as lung cancer.
    Type: Application
    Filed: April 19, 2019
    Publication date: August 8, 2019
    Inventors: Samuel Woodhouse, Stefanie Lensing, Tim Forshew, Vincent Plagnol, Matthew Edward Smith, Karen Howarth, Michael Epstein
  • Publication number: 20190241976
    Abstract: The present disclosure relates to methods for detecting and targeting genomic rearrangements, in particular gene fusion events, by targeting a DNA molecule of interest with a set or pool of primers, wherein the forward primers and reverse primers produce a PCR amplification product when a genomic rearrangement is present. The present disclosure also relates to methods of bioinformatic analysis to determine whether or not the detection of an amplification product from the selective PCR is actually indicative of the presence of a gene fusion. The present disclosure also related to related methods of diagnosis and treatment of diseases and conditions associated with such genomic rearrangements, in particular cancers, such as lung cancer.
    Type: Application
    Filed: April 19, 2019
    Publication date: August 8, 2019
    Inventors: Samuel Woodhouse, Stefanie Lensing, Tim Forshew, Vincent Plagnol, Matthew Edward Smith, Karen Howarth, Michael Epstein
  • Publication number: 20190241977
    Abstract: The present disclosure relates to methods for detecting and targeting genomic rearrangements, in particular gene fusion events, by targeting a DNA molecule of interest with a set or pool of primers, wherein the forward primers and reverse primers produce a PCR amplification product when a genomic rearrangement is present. The present disclosure also relates to methods of bioinformatic analysis to determine whether or not the detection of an amplification product from the selective PCR is actually indicative of the presence of a gene fusion. The present disclosure also related to related methods of diagnosis and treatment of diseases and conditions associated with such genomic rearrangements, in particular cancers, such as lung cancer.
    Type: Application
    Filed: April 19, 2019
    Publication date: August 8, 2019
    Inventors: Samuel Woodhouse, Stefanie Lensing, Tim Forshew, Vincent Plagnol, Matthew Edward Smith, Karen Howarth, Michael Epstein
  • Publication number: 20190241975
    Abstract: The present disclosure relates to methods for detecting and targeting genomic rearrangements, in particular gene fusion events, by targeting a DNA molecule of interest with a set or pool of primers, wherein the forward primers and reverse primers produce a PCR amplification product when a genomic rearrangement is present. The present disclosure also relates to methods of bioinformatic analysis to determine whether or not the detection of an amplification product from the selective PCR is actually indicative of the presence of a gene fusion. The present disclosure also related to related methods of diagnosis and treatment of diseases and conditions associated with such genomic rearrangements, in particular cancers, such as lung cancer.
    Type: Application
    Filed: April 19, 2019
    Publication date: August 8, 2019
    Inventors: Samuel Woodhouse, Stefanie Lensing, Tim Forshew, Vincent Plagnol, Matthew Edward Smith, Karen Howarth, Michael Epstein
  • Publication number: 20190187702
    Abstract: Aspects of the disclosure relate to controlling a vehicle in an autonomous driving mode. For instance, a first location corresponding to a location where the vehicle is to pick up or drop off a passenger is received. A first cost for the vehicle to reach the first location is determined. A second location based on the first location is identified, and a second cost is determined based on a cost for the vehicle to reach the second location and a cost for the passenger to reach the second location. The first cost is compared to the second cost, and a notification is sent based on the notification. In response to sending the notification, instructions to proceed to the second location are received, and in response to receiving the instructions, the vehicle is controlled in the autonomous driving mode to the second location to pick up or drop off the passenger.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 20, 2019
    Inventors: Joshua Seth Herbach, Michael Epstein, Mishika Vora, Guillaume Dupre, Kevin Rawlings