Patents by Inventor Michael A. Moffitt

Michael A. Moffitt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11583684
    Abstract: Methods and systems can facilitate visualizing cathodic and anodic stimulation separately via displaying and modifying graphical representations of anodic and cathodic volumes of activation. Alternately, the methods and systems may separately visualize stimulation of different neural elements, such as nerve fibers and neural cells. These methods and systems can further facilitate programming an electrical stimulation system for stimulating patient tissue.
    Type: Grant
    Filed: March 1, 2022
    Date of Patent: February 21, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Stephen Carcieri, Vikrant Venkateshwar Gunna Srinivasan, Chirag Shah, Peter J. Yoo, Michael A. Moffitt, Sridhar Kothandaraman
  • Publication number: 20230045684
    Abstract: An example of a system for delivering neurostimulation may include a programming control circuit and a stimulation control circuit. The programming control circuit may be configured to generate stimulation parameters controlling delivery of the neurostimulation according to a stimulation configuration. The stimulation control circuit may be configured to specify the stimulation configuration, and may include volume definition circuitry and stimulation configuration circuitry. The volume definition circuitry may be configured to determine one or more test volumes, determine a clinical effect resulting from the one or more test volumes each being activated by the neurostimulation, and determine a target volume using the determined clinical effect. The stimulation configuration circuitry may be configured to generate the specified stimulation configuration for activating the target volume.
    Type: Application
    Filed: October 27, 2022
    Publication date: February 9, 2023
    Inventors: Tianhe Zhang, Michael A. Moffitt, Richard Mustakos, Stephen Carcieri
  • Publication number: 20230031730
    Abstract: An optical stimulation system includes a light source configured to produce light for optical stimulation; a light monitor; an optical lead coupled, or coupleable, to the light source and the light monitor; and a control module coupled, or coupleable, to the light source and the light monitor. The control module includes a memory, and a processor coupled to the memory and configured for receiving a request for verification or measurement of a light output value; in response to the request, receiving, from the light monitor, a measurement of light generated by the light source; and, based on the measurement, reporting a response to the request.
    Type: Application
    Filed: October 12, 2022
    Publication date: February 2, 2023
    Inventors: Dennis Allen Vansickle, Adam Thomas Featherstone, John Rivera, Claude Chabrol, Sarah Renault, Adrien Poizat, Michael A. Moffitt
  • Patent number: 11565131
    Abstract: An optical stimulation system includes a light source; an optical lead coupled, or coupleable, to the light source; at least one of a calibration table or a calibration formula, generated by a calibration procedure specifically using the light source and the optical lead of the optical stimulation system; and a control unit coupled, or coupleable, to the light source. The control module includes a memory to store the at least one of the calibration table or the calibration formula, and a processor coupled to the memory and configured for receiving a target light output level, using the at least one of the calibration table or the calibration formula to determine at least one operational parameter for generating the target light output level, and directing the light source, using the at least one operational parameter, to generate light at the target light output level.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: January 31, 2023
    Assignees: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION, COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES (“CEA”)
    Inventors: Dennis Allen Vansickle, Adam Thomas Featherstone, Claude Chabrol, Michael A. Moffitt, Sarah Renault, Adrien Poizat
  • Patent number: 11565114
    Abstract: An example of a system may include a processor, and a memory device comprising instructions, which when executed by the processor, cause the processor to access at least one of patient input, clinician input, or automatic input, use the patient input, clinician input, or automatic input in a search method, the search method designed to evaluate a plurality of candidate neuromodulation parameter sets to identify an optimal neuromodulation parameter set, and program a neuromodulator using the optimal neuromodulation parameter set to stimulate a patient.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: January 31, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Christopher Ewan Gillespie, Michael A. Moffitt, Que T. Doan, Changfang Zhu
  • Patent number: 11524174
    Abstract: An optical stimulation system includes a light source configured to produce light for optical stimulation; a light monitor; an optical lead coupled, or coupleable, to the light source and the light monitor; and a control module coupled, or coupleable, to the light source and the light monitor. The control module includes a memory, and a processor coupled to the memory and configured for receiving a request for verification or measurement of a light output value; in response to the request, receiving, from the light monitor, a measurement of light generated by the light source; and, based on the measurement, reporting a response to the request.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: December 13, 2022
    Assignees: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION, COMMISSARIAT Â L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES (“CEA”)
    Inventors: Dennis Allen Vansickle, Adam Thomas Featherstone, John Rivera, Claude Chabrol, Sarah Renault, Adrien Poizat, Michael A. Moffitt
  • Patent number: 11517755
    Abstract: An example of a system for delivering neurostimulation may include a programming control circuit and a stimulation control circuit. The programming control circuit may be configured to generate stimulation parameters controlling delivery of the neurostimulation according to a stimulation configuration. The stimulation control circuit may be configured to specify the stimulation configuration, and may include volume definition circuitry and stimulation configuration circuitry. The volume definition circuitry may be configured to determine one or more test volumes, determine a clinical effect resulting from the one or more test volumes each being activated by the neurostimulation, and determine a target volume using the determined clinical effect. The stimulation configuration circuitry may be configured to generate the specified stimulation configuration for activating the target volume.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: December 6, 2022
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Tianhe Zhang, Michael A. Moffitt, Richard Mustakos, Stephen Carcieri
  • Publication number: 20220355106
    Abstract: A method, electrical tissue stimulation system, and programmer for providing therapy to a patient are provided. Electrodes are placed adjacent tissue (e.g., spinal cord tissue) of the patient, electrical stimulation energy is delivered from the electrodes to the tissue in accordance with a defined waveform, and a pulse shape of the defined waveform is modified, thereby changing the characteristics of the electrical stimulation energy delivered from the electrode(s) to the tissue. The pulse shape may be modified by selecting one of a plurality of different pulse shape types or by adjusting a time constant of the pulse shape.
    Type: Application
    Filed: July 19, 2022
    Publication date: November 10, 2022
    Inventors: Dongchul Lee, Michael A. Moffitt, Christopher Ewan Gillespie, Kerry Bradley
  • Publication number: 20220339447
    Abstract: An example method for delivering neurostimulation energy may include performing a training procedure by delivering the neurostimulation energy to a neural target of the patient when the patient is at one or more postures. Electrical activity is sensed from the spinal cord, such as an electrospinogram (ESG). A relationship is determined between the sensed electrical activity and neurostimulation intensity that reduces influence of noise in the sensed electrical activity caused by dynamically changing posture of the patient using mathematical or statistical modeling of the extracted features. Stimulation parameters are modulated according to the determined relationship.
    Type: Application
    Filed: August 6, 2020
    Publication date: October 27, 2022
    Inventors: Andrew James Haddock, Rosana Esteller, Michael A. Moffitt
  • Publication number: 20220266027
    Abstract: Methods and systems for using sensed neural responses for informing aspects of stimulation therapy are disclosed. For example, features of evoked neural responses, such as evoked compound action potentials (ECAPs) can be used for closed-loop feedback control of stimulation parameters. Aspects of the disclosed methods and systems can differentiate between changes in the sensed neural responses that are caused by the environment at stimulating electrodes and changes in the neural responses that are caused by the environment at sensing electrodes. Embodiments determine changes in the morphology of the neural responses, which morphology changes indicate a degree of change in the stimulating environment. Algorithms and systems for assigning and tracking likelihoods for underlying electrode-tissue changes based on sensed neural responses are disclosed. The feedback control modality may be updated based on such likelihoods.
    Type: Application
    Filed: February 9, 2022
    Publication date: August 25, 2022
    Inventors: Tianhe Zhang, Rosana Esteller, Andrew Haddock, Michael Moffitt
  • Publication number: 20220266014
    Abstract: A system for stimulation of a nucleus basalis of Meynert (NBM) of a patient includes an implantable electrical stimulation lead including electrodes and configured for implantation of at least one of the electrodes adjacent to or within the NBM of the patient; and an implantable pulse generator coupleable to the implantable electrical stimulation lead and configured for delivering electrical stimulation to the NBM through at least one of the electrodes of the implantable electrical stimulation lead, the implantable pulse generator including at least one processor configured to, upon user request, during an initial stimulation period, which is at least 1 month in duration and has a start and an end, increase over time at least one of a duration or an amplitude of the electrical stimulation from an initial value at the start of the initial stimulation period to a final value at the end of the initial stimulation period.
    Type: Application
    Filed: February 24, 2022
    Publication date: August 25, 2022
    Inventors: Michael A. Moffitt, David Blake
  • Publication number: 20220266037
    Abstract: Methods and systems can facilitate identifying effective electrodes and other stimulation parameters, as well as determining whether to use cathodic and anodic stimulation. Alternately, the methods and systems may identify effective electrodes and other stimulation parameters based on preferential stimulation of different types of neural elements. These methods and systems can further facilitate programming an electrical stimulation system for stimulating patient tissue.
    Type: Application
    Filed: March 1, 2022
    Publication date: August 25, 2022
    Inventors: Michael A. Moffitt, Stephen Carcieri
  • Publication number: 20220266000
    Abstract: A method of stimulating the nucleus basalis of Meynert (NBM) includes implanting an electrical stimulation lead in a lateral-to-medial trajectory into a brain of a patient, wherein the electrical stimulation lead includes electrodes and at least one of the electrodes is disposed adjacent to or within the NBM of the patient; and delivering electrical stimulation to the NBM through at least one of the electrodes. Other methods include implanting multiple electrical stimulation leads in or near the NBM. Instead of, or in addition to, electrical stimulation leads, optical stimulation leads can be used to stimulate the NBM.
    Type: Application
    Filed: February 24, 2022
    Publication date: August 25, 2022
    Inventor: Michael A. Moffitt
  • Patent number: 11420065
    Abstract: A method, electrical tissue stimulation system, and programmer for providing therapy to a patient are provided. Electrodes are placed adjacent tissue (e.g., spinal cord tissue) of the patient, electrical stimulation energy is delivered from the electrodes to the tissue in accordance with a defined waveform, and a pulse shape of the defined waveform is modified, thereby changing the characteristics of the electrical stimulation energy delivered from the electrode(s) to the tissue. The pulse shape may be modified by selecting one of a plurality of different pulse shape types or by adjusting a time constant of the pulse shape.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: August 23, 2022
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Dongchul Lee, Michael A. Moffitt, Christopher Ewan Gillespie, Kerry Bradley
  • Publication number: 20220241582
    Abstract: A method is disclosed for programming a patient's stimulator device using an external device. The method provides a Graphical User Interface (GUI) on the external device that allows the patient to select from a plurality of displayed stimulation modes to program stimulation provided by one or more electrodes of the stimulator device. The external device stores a model derived for the patient, which model comprises information indicative of a plurality of frequency/pulse width/amplitude coordinates predicted to provide optimal stimulation for the patient. Each stimulation mode corresponds with a subset of coordinates defined in accordance with the plurality of coordinates in the model. Selection of one of the stimulation modes limits programming the stimulator device with coordinates that are within the corresponding subset of coordinates.
    Type: Application
    Filed: April 20, 2022
    Publication date: August 4, 2022
    Inventors: Ismael Huertas Fernandez, Que T. Doan, Changfang Zhu, Rosana Esteller, Michael A. Moffitt
  • Publication number: 20220233867
    Abstract: Methods and systems for determining sub-perception stimulation for a patient having a spinal cord stimulator device are disclosed. In one example, an external device includes an algorithm configured to determine a stimulation program for the stimulator device. The algorithm includes a model that comprises pre-determined energy values that cause sub-perception stimulation. The algorithm is configured to determine stimulation parameters for the stimulation program that yield an energy value within the first model. The energy values in the model may be expressed as a function of frequency. The model in particular provides optimal sub-perception stimulation at low frequencies, such as at 1 kHz and below, or even at 400 Hz and below.
    Type: Application
    Filed: July 1, 2020
    Publication date: July 28, 2022
    Inventors: Ismael Huertas Fernandez, Que T. Doan, Michael A. Moffitt
  • Publication number: 20220219002
    Abstract: A method of treating a patient and an external programmer for use with a neurostimulator. Electrical stimulation energy is conveyed into tissue of the patient via a specified combination of a plurality of electrodes, thereby creating one or more clinical effects. An influence of the specified electrode combination on the clinical effect(s) is determined. An anatomical region of interest is displayed in registration with a graphical representation of the plurality of electrodes. The displayed anatomical region of interest is modified based on the determined influence of the specified electrode combination on the clinical effect(s).
    Type: Application
    Filed: March 29, 2022
    Publication date: July 14, 2022
    Inventors: Michael A. Moffitt, John J. Reinhold
  • Patent number: 11376435
    Abstract: A method of treating an ailment suffered by a patient using one or more electrodes adjacent spinal column tissue of the patient, comprises delivering electrical modulation energy from the one or more electrodes to the spinal column tissue in accordance with a continuous bi-phasic waveform having a positive phase and a negative phase, thereby modulating the spinal column tissue to treat the ailment. An implantable electrical modulation system, comprises one or more electrical terminals configured for being coupled to one or more modulation leads, output modulation circuitry capable of outputting electrical modulation energy to the electrical terminal(s) in accordance with a continuous bi-phasic waveform, and control circuitry configured for modifying a shape of the continuous bi-phasic waveform, thereby changing the characteristics of the electrical modulation energy outputted to the electrode(s).
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: July 5, 2022
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Kerry Bradley, Rafael Carbunaru, Dongchul Lee, Michael A. Moffitt, Christopher Ewan Gillespie
  • Publication number: 20220184399
    Abstract: Systems and methods for providing stimulation and neural response sensing in an implantable stimulation device are disclosed. A neural response database records baseline neural response information from one or more sensing electrodes for a given pole configuration that provides stimulation to a patient. The stimulation device can then take neural response measurements at the sensing electrode(s) and the system (possibly with the assistance of an external device in communication with the stimulation device) can compare the neural response measurements with the baselines. If they differ, as they might if the electrode array has moved in the patient's tissue, an algorithm can be used to move the position of the pole configuration in the electrode array to cause the neural response measurements to equal, or at least come closer to, the neural response baselines.
    Type: Application
    Filed: April 27, 2020
    Publication date: June 16, 2022
    Inventors: Tianhe Zhang, Rosana Esteller, Michael A. Moffitt, Joseph M. Bocek
  • Publication number: 20220176135
    Abstract: Methods and systems can facilitate visualizing cathodic and anodic stimulation separately. Alternately, the methods and systems may separately visualize stimulation of different neural elements, such as nerve fibers and neural cells. These methods and systems can further facilitate programming an electrical stimulation system for stimulating patient tissue.
    Type: Application
    Filed: March 1, 2022
    Publication date: June 9, 2022
    Inventors: Stephen Carcieri, Vikrant Venkateshwar Gunna Srinivasan, Chirag Shah, Peter J. Yoo, Michael A. Moffitt, Sridhar Kothandaraman