Patents by Inventor Michael Anthony Klug

Michael Anthony Klug has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11977230
    Abstract: A wearable display system includes one or more emissive micro-displays, e.g., micro-LED displays. The micro-displays may be monochrome micro-displays or full-color micro-displays. The micro-displays may include arrays of light emitters. Light collimators may be utilized to narrow the angular emission profile of light emitted by the light emitters. Where a plurality of emissive micro-displays is utilized, the micro-displays may be positioned at different sides of an optical combiner, e.g., an X-cube prism which receives light rays from different micro-displays and outputs the light rays from the same face of the cube. The optical combiner directs the light to projection optics, which outputs the light to an eyepiece that relays the light to a user's eye. The eyepiece may output the light to the user's eye with different amounts of wavefront divergence, to place virtual content on different depth planes.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: May 7, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Michael Anthony Klug, Evgeni Poliakov, Jahja I. Trisnadi, Hyunsun Chung, Lionel Ernest Edwin, Howard Russell Cohen, Robert Blake Taylor, Andrew Ian Russell, Kevin Richard Curtis, Clinton Carlisle
  • Patent number: 11971549
    Abstract: Very high refractive index (n>2.2) lightguide substrates enable the production of 70° field of view eyepieces with all three color primaries in a single eyepiece layer. Disclosed herein are viewing optics assembly architectures that make use of such eyepieces to reduce size and cost, simplifying manufacturing and assembly, and better-accommodating novel microdisplay designs.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: April 30, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Michael Anthony Klug, Kevin Richard Curtis, Vikramjit Singh, Kang Luo, Michal Beau Dennison Vaughn, Samarth Bhargava, Shuqiang Yang, Michael Nevin Miller, Frank Y. Xu, Kevin Messer, Robert D. Tekolste
  • Publication number: 20240126090
    Abstract: Head mounted display systems configured to project light to an eye of a user to display augmented reality image content in a vision field of the user are disclosed. In embodiments, the system includes a frame configured to be supported on a head of the user, an image projector configured to project images into the user's eye, a camera coupled to the frame, a waveguide optically coupled to the camera, an optical coupling optical element me, an out-coupling element configured to direct light emitted from the waveguide to the camera, and a first light source configured to direct light to the user's eye through the waveguide. Electronics control the camera to capture images periodically and farther control the first light source to pulse in time with the camera such that light emitted by the light source has a reduced intensity when the camera is not capturing images.
    Type: Application
    Filed: October 24, 2023
    Publication date: April 18, 2024
    Inventors: Asif Sinay, Barak Freedman, Michael Anthony Klug, Chulwoo Oh, Nizan Meitav
  • Patent number: 11935206
    Abstract: A virtual image generation system comprises a planar optical waveguide having opposing first and second faces, an in-coupling (IC) element configured for optically coupling a collimated light beam from an image projection assembly into the planar optical waveguide as an in-coupled light beam, a first orthogonal pupil expansion (OPE) element associated with the first face of the planar optical waveguide for splitting the in-coupled light beam into a first set of orthogonal light beamlets, a second orthogonal pupil expansion (OPE) element associated with the second face of the planar optical waveguide for splitting the in-coupled light beam into a second set of orthogonal light beamlets, and an exit pupil expansion (EPE) element associated with the planar optical waveguide for splitting the first and second sets of orthogonal light beamlets into an array of out-coupled light beamlets that exit the planar optical waveguide.
    Type: Grant
    Filed: April 5, 2023
    Date of Patent: March 19, 2024
    Assignee: Magic Leap, Inc
    Inventors: Brian T. Schowengerdt, Mathew D. Watson, David Tinch, Ivan Li Chuen Yeoh, John Graham Macnamara, Lionel Ernest Edwin, Michael Anthony Klug, William Hudson Welch
  • Publication number: 20240069334
    Abstract: A display system aligns the location of its exit pupil with the location of a viewer's pupil by changing the location of the portion of a light source that outputs light. The light source may include an array of pixels that output light, thereby allowing an image to be displayed on the light source. The display system includes a camera that captures images of the eye and negatives of the images are displayed by the light source. In the negative image, the dark pupil of the eye is a bright spot which, when displayed by the light source, defines the exit pupil of the display system. The location of the pupil of the eye may be tracked by capturing the images of the eye, and the location of the exit pupil of the display system may be adjusted by displaying negatives of the captured images using the light source.
    Type: Application
    Filed: November 2, 2023
    Publication date: February 29, 2024
    Inventor: Michael Anthony KLUG
  • Publication number: 20240045215
    Abstract: An augmented reality display system is configured to direct a plurality of parallactically-disparate intra-pupil images into a viewer's eye. The parallactically-disparate intra-pupil images provide different parallax views of a virtual object, and impinge on the pupil from different angles. In the aggregate, the wavefronts of light forming the images approximate a continuous divergent wavefront and provide selectable accommodation cues for the user, depending on the amount of parallax disparity between the intra-pupil images. The amount of parallax disparity is selected using a light source that outputs light for different images from different locations, with spatial differences in the locations of the light output providing differences in the paths that the light takes to the eye, which in turn provide different amounts of parallax disparity.
    Type: Application
    Filed: October 19, 2023
    Publication date: February 8, 2024
    Inventors: Michael Anthony KLUG, Robert KONRAD, Gordon WETZSTEIN, Brian T. SCHOWENGERDT, Michal Beau Dennison VAUGHN
  • Publication number: 20240036326
    Abstract: Examples of an imaging system for use with a head mounted display (HMD) are disclosed. The imaging system can include a forward-facing imaging camera and a surface of a display of the HMD can include an off-axis diffractive optical element (DOE) or hot mirror configured to reflect light to the imaging camera. The DOE or hot mirror can be segmented. The imaging system can be used for eye tracking, biometric identification, multiscopic reconstruction of the three-dimensional shape of the eye, etc.
    Type: Application
    Filed: July 18, 2023
    Publication date: February 1, 2024
    Inventors: Michael Anthony Klug, Adrian KAEHLER
  • Publication number: 20240036331
    Abstract: A display system is configured to direct a plurality of parallactically-disparate intra-pupil images into a viewer's eye. The parallactically-disparate intra-pupil images provide different parallax views of a virtual object, and impinge on the pupil from different angles. In the aggregate, the wavefronts of light forming the images approximate a continuous divergent wavefront and provide selectable accommodation cues for the user, depending on the amount of parallax disparity between the intra-pupil images. The amount of parallax disparity may be selected using an array of shutters that selectively regulate the entry of image light into an eye. Each opened shutter in the array provides a different intra-pupil image, and the locations of the open shutters provide the desired amount of parallax disparity between the images. In some other embodiments, the images may be formed by an emissive micro-display.
    Type: Application
    Filed: October 8, 2023
    Publication date: February 1, 2024
    Inventor: Michael Anthony KLUG
  • Patent number: 11860359
    Abstract: A display system aligns the location of its exit pupil with the location of a viewer's pupil by changing the location of the portion of a light source that outputs light. The light source may include an array of pixels that output light, thereby allowing an image to be displayed on the light source. The display system includes a camera that captures images of the eye and negatives of the images are displayed by the light source. In the negative image, the dark pupil of the eye is a bright spot which, when displayed by the light source, defines the exit pupil of the display system. The location of the pupil of the eye may be tracked by capturing the images of the eye, and the location of the exit pupil of the display system may be adjusted by displaying negatives of the captured images using the light source.
    Type: Grant
    Filed: October 7, 2022
    Date of Patent: January 2, 2024
    Assignee: Magic Leap, Inc.
    Inventor: Michael Anthony Klug
  • Publication number: 20230417986
    Abstract: An eyepiece for an augmented reality display system. The eyepiece can include a waveguide substrate. The waveguide substrate can include an input coupler grating (ICG), an orthogonal pupil expander (OPE) grating, a spreader grating, and an exit pupil expander (EPE) grating. The ICG can couple at least one input light beam into at least a first guided light beam that propagates inside the waveguide substrate. The OPE grating can divide the first guided light beam into a plurality of parallel, spaced-apart light beams. The spreader grating can receive the light beams from the OPE grating and spread their distribution. The spreader grating can include diffractive features oriented at approximately 90° to diffractive features of the OPE grating. The EPE grating can re-direct the light beams from the first OPE grating and the first spreader grating such that they exit the waveguide substrate.
    Type: Application
    Filed: July 7, 2023
    Publication date: December 28, 2023
    Inventors: Michael Anthony Klug, Robert Dale Tekolste, William Hudson Welch, Eric Browy, Victor Kai Liu, Samarth Bhargava
  • Publication number: 20230408823
    Abstract: Architectures are provided for selectively outputting light for forming images, the light having different wavelengths and being outputted with low levels of crosstalk. In some embodiments, light is incoupled into a waveguide and deflected to propagate in different directions, depending on wavelength. The incoupled light then outcoupled by outcoupling optical elements that outcouple light based on the direction of propagation of the light. In some other embodiments, color filters are between a waveguide and outcoupling elements. The color filters limit the wavelengths of light that interact with and are outcoupled by the outcoupling elements. In yet other embodiments, a different waveguide is provided for each range of wavelengths to be outputted. Incoupling optical elements selectively incouple light of the appropriate range of wavelengths into a corresponding waveguide, from which the light is outcoupled.
    Type: Application
    Filed: September 1, 2023
    Publication date: December 21, 2023
    Inventors: Robert Dale Tekolste, Michael Anthony Klug, Brian T. Schowengerdt
  • Patent number: 11841481
    Abstract: A head mounted display system can include a camera, at least one waveguide, at least one coupling optical element that is configured such that light is coupled into said waveguide and guided therein, and at least one out-coupling element. The at least one out-coupling element can be configured to couple light that is guided within said waveguide out of said waveguide and direct said light to said camera. The camera can be disposed in an optical path with respect to said at least one out-coupling optical element to receive at least a portion of the light that is coupled into said waveguide via the coupling element and guided therein and that is coupled out from said waveguide by said out-coupling coupling element such that images may be captured by said camera.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: December 12, 2023
    Assignee: MAGIC LEAP, INC.
    Inventors: Asif Sinay, Barak Freedman, Michael Anthony Klug, Chulwoo Oh, Nizan Meitav
  • Patent number: 11835724
    Abstract: An augmented reality display system is configured to direct a plurality of parallactically-disparate intra-pupil images into a viewer's eye. The parallactically-disparate intra-pupil images provide different parallax views of a virtual object, and impinge on the pupil from different angles. In the aggregate, the wavefronts of light forming the images approximate a continuous divergent wavefront and provide selectable accommodation cues for the user, depending on the amount of parallax disparity between the intra-pupil images. The amount of parallax disparity is selected using a light source that outputs light for different images from different locations, with spatial differences in the locations of the light output providing differences in the paths that the light takes to the eye, which in turn provide different amounts of parallax disparity.
    Type: Grant
    Filed: February 13, 2023
    Date of Patent: December 5, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Michael Anthony Klug, Robert Konrad, Gordon Wetzstein, Brian T. Schowengerdt, Michal Beau Dennison Vaughn
  • Publication number: 20230384499
    Abstract: Architectures are provided for selectively incoupling one or more streams of light from a multiplexed light stream into a waveguide. The multiplexed light stream can have light with different characteristics (e.g., different wavelengths and/or different polarizations). The waveguide can comprise in-coupling elements that can selectively couple one or more streams of light from the multiplexed light stream into the waveguide while transmitting one or more other streams of light from the multiplexed light stream.
    Type: Application
    Filed: August 14, 2023
    Publication date: November 30, 2023
    Inventors: Michael Anthony Klug, Brian T. Schowengerdt, Michael Nevin Miller, Vikramjit Singh, Christophe Peroz, Pierre St. Hilaire, Jie Sun
  • Publication number: 20230373174
    Abstract: An example system for molding a photocurable material into a planar object includes a first mold structure having a first mold surface, a second mold structure having a second mold surface, and one or more protrusions disposed along at least one of the first mold surface or the second mold surface. During operation, the system is configured to position the first and second mold structures such that the first and second mold surfaces face each other with the one or more protrusions contacting the opposite mold surface, and a volume having a total thickness variation (TTV) of 500 nm or less is defined between the first and second mold surfaces. The system is further configured to receive the photocurable material in the volume, and direct radiation at the one or more wavelengths into the volume.
    Type: Application
    Filed: August 3, 2023
    Publication date: November 23, 2023
    Inventors: Chieh Chang, Christophe Peroz, Sharad D. Bhagat, Roy Matthew Patterson, Michael Anthony Klug, Charles Scott Carden
  • Publication number: 20230367132
    Abstract: Illuminations systems that separate different colors into laterally displaced beams may be used to direct different color image content into an eyepiece for displaying images in the eye. Such an eyepiece may be used, for example, for an augmented reality head mounted display. Illumination systems may be provided that utilize one or more waveguides to direct light from a light source towards a spatial light modulator. Light from the spatial light modulator may be directed towards an eyepiece. Some aspects of the invention provide for light of different colors to be outcoupled at different angles from the one or more waveguides and directed along different beam paths.
    Type: Application
    Filed: May 23, 2023
    Publication date: November 16, 2023
    Inventors: Hui-Chuan Cheng, Chulwoo Oh, Clinton Carlisle, Michael Anthony Klug, William J. Molteni, Jr.
  • Patent number: 11815688
    Abstract: A display system is configured to direct a plurality of parallactically-disparate intra-pupil images into a viewer's eye. The parallactically-disparate intra-pupil images provide different parallax views of a virtual object, and impinge on the pupil from different angles. In the aggregate, the wavefronts of light forming the images approximate a continuous divergent wavefront and provide selectable accommodation cues for the user, depending on the amount of parallax disparity between the intra-pupil images. The amount of parallax disparity may be selected using an array of shutters that selectively regulate the entry of image light into an eye. Each opened shutter in the array provides a different intra-pupil image, and the locations of the open shutters provide the desired amount of parallax disparity between the images. In some other embodiments, the images may be formed by an emissive micro-display.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: November 14, 2023
    Assignee: Magic Leap, Inc.
    Inventor: Michael Anthony Klug
  • Publication number: 20230341695
    Abstract: A head mounted display system can include a camera, at least one waveguide, at least one coupling optical element that is configured such that light is coupled into said waveguide and guided therein, and at least one out-coupling element. The at least one out-coupling element can be configured to couple light that is guided within said waveguide out of said waveguide and direct said light to said camera. The at least one coupling element may comprise a diffractive optical element having optical power.
    Type: Application
    Filed: June 29, 2023
    Publication date: October 26, 2023
    Inventors: Asif SINAY, Nizan MEITAV, Chulwoo Oh, Barak FREEDMAN, Michael Anthony Klug, Adam C. CARLSON
  • Publication number: 20230341694
    Abstract: Examples of eye-imaging apparatus using diffractive optical elements are provided. For example, an optical device comprises a substrate having a proximal surface and a distal surface, a first coupling optical element disposed on one of the proximal and distal surfaces of the substrate, and a second coupling optical element disposed on one of the proximal and distal surfaces of the substrate and offset from the first coupling optical element. The first coupling optical element can be configured to deflect light at an angle to totally internally reflect (TIR) the light between the proximal and distal surfaces and toward the second coupling optical element, and the second coupling optical element can be configured to deflect at an angle out of the substrate. The eye-imaging apparatus can be used in a head-mounted display such as an augmented or virtual reality display.
    Type: Application
    Filed: June 27, 2023
    Publication date: October 26, 2023
    Inventors: Chunyu Gao, Chulwoo Oh, Michael Anthony Klug, Evyatar Bluzer
  • Patent number: 11796814
    Abstract: Architectures are provided for selectively outputting light for forming images, the light having different wavelengths and being outputted with low levels of crosstalk. In some embodiments, light is incoupled into a waveguide and deflected to propagate in different directions, depending on wavelength. The incoupled light then outcoupled by outcoupling optical elements that outcouple light based on the direction of propagation of the light. In some other embodiments, color filters are between a waveguide and outcoupling elements. The color filters limit the wavelengths of light that interact with and are outcoupled by the outcoupling elements. In yet other embodiments, a different waveguide is provided for each range of wavelengths to be outputted. Incoupling optical elements selectively incouple light of the appropriate range of wavelengths into a corresponding waveguide, from which the light is outcoupled.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: October 24, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Robert Dale TeKolste, Michael Anthony Klug, Brian T. Schowengerdt