Patents by Inventor Michael B. Cain

Michael B. Cain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6829422
    Abstract: Disclosed is a dispersion compensating and dispersion slope compensating single mode optical waveguide fiber. The refractive index profiles of waveguide fibers in accord with the invention are disclosed and described. These index profiles provide a waveguide fiber having negative total dispersion and negative total dispersion slope so that a standard waveguide fiber is compensated over an extended wavelength range. A telecommunications link using the fiber in accord with the invention is also disclosed and described. A standard fiber to compensating fiber length ratio in the range of 1:1 to 3:1 is shown to give optimum link performance with respect to limiting non-linear dispersion effects.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: December 7, 2004
    Assignee: Corning Incorporated
    Inventors: George E. Berkey, Scott R. Bickham, Michael B. Cain, Pamela A. Hajcak, Upendra H. Manyam, Snigdharaj K. Mishra, V. Srikant
  • Patent number: 6789960
    Abstract: A bridge fiber and a method of connecting two other dissimilar optical waveguide fibers is presented. The bridge fiber may be utilized to connect positive dispersion fibers or step index single mode fibers to compensative fibers, such as dispersion compensation fibers or dispersion-slope compensation fibers.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: September 14, 2004
    Assignee: Corning Incorporated
    Inventors: Scott R. Bickham, Michael B. Cain, Pamela A. Hajcak, Martin Hempstead, Lisa L. Hepburn, Stephan L. Logunov, Lewis Kirk Klingensmith, Richard E. Rebis
  • Patent number: 6782175
    Abstract: An optical transmission system is provided. The system includes a series of consecutive blocks of optical fiber. Each block of the system includes a first, second and third series of spans of optical fiber, where the second series of spans compensates for accumulated dispersion in the first and third series in the wavelength range of transmission. Optionally either the first or third series can be omitted.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: August 24, 2004
    Assignee: Corning Incorporated
    Inventors: Scott R. Bickham, Michael B. Cain
  • Patent number: 6705127
    Abstract: The present invention is directed to methods of producing soot used in the manufacture of optical waveguides. Both non-aqueous liquid reactants and aqueous solutions containing one or more salts are delivered through an atomizing burner assembly to form a homogenous soot stream containing the oxides of the selected elements contained within the non-aqueous liquid reactant and the aqueous solution. The resulting multi-component soot is collected by conventional methods to form preforms used in the manufacture of optical waveguide fibers. Preforms formed by the methods are also disclosed.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: March 16, 2004
    Assignee: Corning Incorporated
    Inventors: Michael B. Cain, Daniel W. Hawtof, V. Srikant
  • Patent number: 6701052
    Abstract: Disclosed is a dispersion compensating and dispersion slope compensating single mode optical waveguide fiber. The refractive index profiles of waveguide fibers in accord with the invention are disclosed and described. These index profiles provide a waveguide fiber having negative total dispersion and negative total dispersion slope so that a standard waveguide fiber is compensated over an extended wavelength range. A telecommunications link using the fiber in accord with the invention is also disclosed and described. A standard fiber to compensating fiber length ratio in the range of 1:1 to 3:1 is shown to give optimum link performance with respect to limiting non-linear dispersion effects.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: March 2, 2004
    Assignee: Corning Incorporated
    Inventors: George E. Berkey, Scott R. Bickham, Michael B. Cain, Pamela A. Hajcak, Upendra H. Manyam, Snigdharaj K. Mishra, V. Srikant
  • Patent number: 6694081
    Abstract: Disclosed is a telecommunications system link that includes plurality of spans each having a transmission fiber and a compensating fiber. The compensating fiber is selected to completely compensate dispersion slope while only partially compensating total dispersion. This configuration compensates dispersion over an operating wavelength range while at the same time providing a transmission path having non-zero dispersion.
    Type: Grant
    Filed: March 11, 2002
    Date of Patent: February 17, 2004
    Assignee: Corning Incorporated
    Inventors: Scott R. Bickham, Michael B. Cain, James M. Grochocinski
  • Patent number: 6671445
    Abstract: Disclosed are refractive index profiles for total dispersion compensating optical waveguide fibers for use in high data rate, long length telecommunications systems. The optical waveguide fibers in accord with the invention provide substantially equal compensation of total dispersion over a range of wavelengths, thus facilitating wavelength division multiplexed systems. Also disclosed are spans of optical waveguide fiber that include a length of transmission fiber together with a length of the compensating fiber. The spans are joined end to end in series arrangement to form the optical waveguide fiber part of a telecommunication system.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: December 30, 2003
    Assignee: Corning Incorporated
    Inventors: Scott R. Bickham, Michael B. Cain, Shiva Kumar, Snigdharaj K. Mishra, V. Srikant, Jeffery S. Stone
  • Publication number: 20030198448
    Abstract: An optical transmission system is provided. The system includes a series of consecutive blocks of optical fiber. Each block of the system includes a first, second and third series of spans of optical fiber, where the second series of spans compensates for accumulated dispersion in the first and third series in the wavelength range of transmission. Optionally either the first or third series can be omitted.
    Type: Application
    Filed: May 16, 2003
    Publication date: October 23, 2003
    Inventors: Scott R. Bickham, Michael B. Cain
  • Publication number: 20030142941
    Abstract: Disclosed is a dispersion compensating and dispersion slope compensating single mode optical waveguide fiber. The refractive index profiles of waveguide fibers in accord with the invention are disclosed and described. These index profiles provide a waveguide fiber having negative total dispersion and negative total dispersion slope so that a standard waveguide fiber is compensated over an extended wavelength range. A telecommunications link using the fiber in accord with the invention is also disclosed and described. A standard fiber to compensating fiber length ratio in the range of 1:1 to 3:1 is shown to give optimum link performance with respect to limiting non-linear dispersion effects.
    Type: Application
    Filed: January 30, 2003
    Publication date: July 31, 2003
    Inventors: George E. Berkey, Scott R. Bickham, Michael B. Cain, Pamela A. Hajcak, Upendra H. Manyam, Snigdharaj K. Mishra, V. Srikant
  • Patent number: 6580861
    Abstract: An optical transmission system is provided. The system includes a series of consecutive blocks of optical fiber. Each block of the system includes a first, second and third series of spans of optical fiber, where the second series of spans compensates for accumulated dispersion in the first and third series in the wavelength range of transmission. Optionally either the first or third series can be omitted.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: June 17, 2003
    Assignee: Corning Incorporated
    Inventors: Scott R. Bickham, Michael B. Cain
  • Patent number: 6574994
    Abstract: A method for manufacturing optical fiber preform and fiber. According to the method, a core cane segment is formed with a refractive index delta preferably between 0.2% and 3% that is most preferably formed by an OVD method. A sleeve is formed including at least one down-doped moat preferably having a refractive index delta between −0.1% and −1.2% and at least one up-doped ring preferably having a refractive index delta between 0.1% and 1.2%. The sleeve is formed by introducing glass precursor and dopant compounds into a cavity of a preferably silica glass tube (e.g., one of an MCVD and PCVD method). The core cane segment is inserted into the sleeve and the sleeve is collapsed onto the core cane segment to form a core-sleeve assembly. The core-sleeve assembly is again drawn into a cane and additional cladding is preferably formed thereon. Optical fiber may be drawn from the preform in a conventional draw apparatus.
    Type: Grant
    Filed: June 18, 2001
    Date of Patent: June 10, 2003
    Assignee: Corning Incorporated
    Inventors: Michael B. Cain, Liam R. dePaor, Robert B. Desorcie, Richard M. Fiacco, Cynthia B. Giroux
  • Publication number: 20030063875
    Abstract: A bridge fiber and a method of connecting two other dissimilar optical waveguide fibers is presented. The bridge fiber may be utilized to connect positive dispersion fibers or step index single mode fibers to compensative fibers, such as dispersion compensation fibers or dispersion-slope compensation fibers.
    Type: Application
    Filed: May 31, 2002
    Publication date: April 3, 2003
    Inventors: Scott R. Bickham, Michael B. Cain, Pamela A. Hajcak, Martin Hempstead, Lisa L. Hepburn, Stephan L. Logunov
  • Publication number: 20030021561
    Abstract: Disclosed is a dispersion compensating and dispersion slope compensating single mode optical waveguide fiber. The refractive index profiles of waveguide fibers in accord with the invention are disclosed and described. These index profiles provide a waveguide fiber having negative total dispersion and negative total dispersion slope so that a standard waveguide fiber is compensated over an extended wavelength range. A telecommunications link using the fiber in accord with the invention is also disclosed and described. A standard fiber to compensating fiber length ratio in the range of 1:1 to 3:1 is shown to give optimum link performance with respect to limiting non-linear dispersion effects.
    Type: Application
    Filed: March 30, 2001
    Publication date: January 30, 2003
    Inventors: George E. Berkey, Scott R. Bickham, Michael B. Cain, Pamela A. Hajcak, Upendra H. Manyam, Snigdharaj K. Mishra, V. Srikant
  • Publication number: 20020189296
    Abstract: A method for manufacturing optical fiber preform and fiber. According to the method, a core cane segment is formed with a refractive index delta preferably between 0.2% and 3% that is most preferably formed by an OVD method. A sleeve is formed including at least one down-doped moat preferably having a refractive index delta between −0.1% and −1.2% and at least one up-doped ring preferably having a refractive index delta between 0.1% and 1.2%. The sleeve is formed by introducing glass precursor and dopant compounds into a cavity of a preferably silica glass tube (e.g., one of an MCVD and PCVD method). The core cane segment is inserted into the sleeve and the sleeve is collapsed onto the core cane segment to form a core-sleeve assembly. The core-sleeve assembly is again drawn into a cane and additional cladding is preferably formed thereon. Optical fiber may be drawn from the preform in a conventional draw apparatus.
    Type: Application
    Filed: June 18, 2001
    Publication date: December 19, 2002
    Inventors: Michael B. Cain, Liam R. dePaor, Robert B. Desorcie, Richard M. Fiacco, Cynthia B. Giroux
  • Publication number: 20020181907
    Abstract: Disclosed is a telecommunications system link that includes plurality of spans each having a transmission fiber and a compensating fiber. The compensating fiber is selected to completely compensate dispersion slope while only partially compensating total dispersion. This configuration compensates dispersion over an operating wavelength range while at the same time providing a transmission path having non-zero dispersion.
    Type: Application
    Filed: March 11, 2002
    Publication date: December 5, 2002
    Inventors: Scott R. Bickham, Michael B. Cain, James M. Grochocinski
  • Patent number: 6430347
    Abstract: Disclosed is a dispersion compensating waveguide fiber suitable for use in high data rate, high light power telecommunications systems of intermediate length. The refractive index profile of the compensation fiber is segmented. The segment relative refractive indexes and radii are chosen to provide negative total dispersion and negative total dispersion slope over an extended wavelength range. The index profile design is flexible enough to provide compensated links having total dispersion that is positive, negative, or zero, while maintaining appropriate total dispersion slope compensation. In addition, the waveguide fiber of the invention may be cabled or otherwise buffered prior to its use in a communications system.
    Type: Grant
    Filed: August 23, 2000
    Date of Patent: August 6, 2002
    Assignee: Corning Incorporated
    Inventors: Michael B. Cain, V. Srikant
  • Publication number: 20020028052
    Abstract: An optical transmission system is provided. The system includes a series of consecutive blocks of optical fiber. Each block of the system includes a first, second and third series of spans of optical fiber, where the second series of spans compensates for accumulated dispersion in the first and third series in the wavelength range of transmission. Optionally either the first or third series can be omitted.
    Type: Application
    Filed: July 11, 2001
    Publication date: March 7, 2002
    Inventors: Scott R. Bickham, Michael B. Cain
  • Publication number: 20020028051
    Abstract: Disclosed are refractive index profiles for total dispersion compensating optical waveguide fibers for use in high data rate, long length telecommunications systems. The optical waveguide fibers in accord with the invention provide substantially equal compensation of total dispersion over a range of wavelengths, thus facilitating wavelength division multiplexed systems. Also disclosed are spans of optical waveguide fiber that include a length of transmission fiber together with a length of the compensating fiber. The spans are joined end to end in series arrangement to form the optical waveguide fiber part of a telecommunication system.
    Type: Application
    Filed: May 30, 2001
    Publication date: March 7, 2002
    Inventors: Scott R. Bickham, Michael B. Cain, Shiva Kumar, Snigdharaj K. Mishra, V. Srikant, Jeffery S. Stone
  • Patent number: 5922100
    Abstract: A precision burner for oxidizing halide-free, silicon-containing compounds, such as, octamethylcyclotetrasiloxane (OMCTS), is provided. The burner includes a subassembly (13) which can be precisely mounted on a burner mounting block (107) through the use of an alignment stub (158), a raised face (162) on the burner mounting block (107), and a recess (160) in the back of the subassembly (13). The burner's face includes four concentric gas-emitting regions: a first central region (36, 90) from which exits a mixture of OMCTS and O.sub.2, a second innershield region (38, 92) from which exits N.sub.2, a third outershield region (40, 42, 94, 96) from which exits O.sub.2, and a fourth premix region (44, 98) from which exits a mixture of CH.sub.4 and O.sub.2. The burner provides more efficient utilization of halide-free, silicon-containing raw materials than prior burners.
    Type: Grant
    Filed: October 15, 1996
    Date of Patent: July 13, 1999
    Assignee: Corning Incorporated
    Inventors: Michael B. Cain, Robert B. Desorice, William J. Kiefer, Dale R. Powers
  • Patent number: 5707415
    Abstract: A vaporizer (film evaporator) (13) for halide-free, silicon-containing liquid reactants used in producing preforms is provided. The vaporizer includes a plurality of packed-bed columns (22) surrounding a central tube (24). A mixture of liquid reactant, e.g., octamethylcyclotetrasiloxane, and gas, e.g., oxygen, is sprayed onto the top surfaces (54) of the columns (22) by a set of spray nozzles (32). The liquid reactant and the gas flow downward together through the columns and are heated by hot oil (28) which flows around the columns' walls (50). The liquid reactant evaporates into the gas until the dew point temperature is reached, at which point all of the liquid reactant will have been converted into vapor. The vapor/gas mixture exits the bottom surfaces 56 of columns (22), where its direction of flow changes from downward to upward. This change in flow direction separates higher molecular weight species (46) from the vapor/gas mixture.
    Type: Grant
    Filed: December 22, 1995
    Date of Patent: January 13, 1998
    Assignee: Corning Incorporated
    Inventor: Michael B. Cain