Patents by Inventor Michael Beerman

Michael Beerman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230201980
    Abstract: Systems are provided for fabricating a preform for a fuselage section of an aircraft. The system includes advancing a series of arcuate mandrel sections in a process direction through an assembly line, laying up fiber reinforced material onto the arcuate mandrel sections via layup stations, uniting the series of arcuate mandrel sections into a combined mandrel; and splicing the fiber reinforced material laid-up onto the arcuate mandrel sections.
    Type: Application
    Filed: February 20, 2023
    Publication date: June 29, 2023
    Inventors: Daniel R. Smith, Darrell D. Jones, Paul T. Pritchard, Jason A. Medenciy, Stephen Keith Kirchmeier, Kurtis Shuldberg Willden, Robert William Whiting, Michael Beerman, Raviendra Sidath Suriyaarachchi, Jeremy Evan Justice, Paul Chace Wilcoxson
  • Patent number: 11597044
    Abstract: Systems and methods are provided for fabricating a preform for a fuselage section of an aircraft. The method includes advancing a series of arcuate mandrel sections in a process direction through an assembly line, laying up fiber reinforced material onto the arcuate mandrel sections via layup stations, uniting the series of arcuate mandrel sections into a combined mandrel; and splicing the fiber reinforced material laid-up onto the arcuate mandrel sections.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: March 7, 2023
    Assignee: The Boeing Company
    Inventors: Daniel R. Smith, Darrell D. Jones, Paul T. Pritchard, Jason A. Medenciy, Stephen Keith Kirchmeier, Kurtis Shuldberg Willden, Robert William Whiting, Michael Beerman, Raviendra Sidath Suriyaarachchi, Jeremy Evan Justice, Paul Chace Wilcoxson
  • Publication number: 20220152759
    Abstract: Systems and methods are provided for fabricating a preform for a fuselage section of an aircraft. The method includes advancing a series of arcuate mandrel sections in a process direction through an assembly line, laying up fiber reinforced material onto the arcuate mandrel sections via layup stations, uniting the series of arcuate mandrel sections into a combined mandrel; and splicing the fiber reinforced material laid-up onto the arcuate mandrel sections.
    Type: Application
    Filed: November 10, 2021
    Publication date: May 19, 2022
    Inventors: Daniel R. Smith, Darrell D. Jones, Paul T. Pritchard, Jason A. Medenciy, Stephen Keith Kirchmeier, Kurtis Shuldberg Willden, Robert William Whiting, Michael Beerman, Raviendra Sidath Suriyaarachchi, Jeremy Evan Justice, Paul Chace Wilcoxson
  • Publication number: 20210405258
    Abstract: A method of making an integrated depth sensor window lens, such as for an augmented reality (AR) head set, the depth sensor window lens comprising a sensor lens and an illuminator lens separated by an opaque dam. The method uses a two-shot injection molding process, a first shot comprising an optically clear polymeric material to form the sensor lens and the illuminator lens and the second shot comprising an opaque polymeric material to form the separator of the two.
    Type: Application
    Filed: August 31, 2021
    Publication date: December 30, 2021
    Inventors: Maosheng YE, Javier YANEZ, Frank C. HOLLOWAY, Michael BEERMAN, Roy Joseph RICCOMINI
  • Patent number: 11137520
    Abstract: A method of making an integrated depth sensor window lens, such as for an augmented reality (AR) head set, the depth sensor window lens comprising a sensor lens and an illuminator lens separated by an opaque dam. The method uses a two-shot injection molding process, a first shot comprising an optically clear polymeric material to form the sensor lens and the illuminator lens and the second shot comprising an opaque polymeric material to form the separator of the two.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: October 5, 2021
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Maosheng Ye, Javier Yanez, Frank C. Holloway, Michael Beerman, Roy Joseph Riccomini
  • Publication number: 20200271828
    Abstract: A method of making an integrated depth sensor window lens, such as for an augmented reality (AR) head set, the depth sensor window lens comprising a sensor lens and an illuminator lens separated by an opaque dam. The method uses a two-shot injection molding process, a first shot comprising an optically clear polymeric material to form the sensor lens and the illuminator lens and the second shot comprising an opaque polymeric material to form the separator of the two.
    Type: Application
    Filed: April 11, 2019
    Publication date: August 27, 2020
    Inventors: Maosheng YE, Javier YANEZ, Frank C. HOLLOWAY, Michael BEERMAN, Roy Joseph RICCOMINI
  • Patent number: 9986667
    Abstract: A flexible thermal conduit runs from a first housing portion of an electronic device to a second housing portion of the electronic device, to convey heat generated by an electronic component located in the first housing portion to a heat dissipation structure located in the second housing portion, where the second housing portion is flexibly coupled to the first housing portion, for example, by a hinge or other type of joint. The flexible conduit may include a plurality of layers of thin, flat thermally conductive material, which may be arranged to flex independently of each other in the region where the first and second housing portions are coupled.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: May 29, 2018
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Michael Nikkhoo, Doug Heirich, Roy Riccomini, Maosheng Ye, Michael Beerman, Joseph Daniel Taylor
  • Publication number: 20170353714
    Abstract: A self-calibrating display system includes a stereoscopic, near-eye display device, a docking unit, and one or more cameras. The display device includes one or more coupling structures, in addition to one or more microprojectors configured to project a right calibration image and a left calibration image. The docking unit includes one or more complementary coupling structures, each being releasably lockable to a coupling structure of the display device, to prevent movement of the display device relative to the docking unit. The one or more cameras are configured to acquire a secondary image of the right calibration image and a secondary image of the left calibration image.
    Type: Application
    Filed: June 6, 2016
    Publication date: December 7, 2017
    Inventors: Navid Poulad, Roy J. Riccomini, Andriy Pletenetskyy, Michael Beerman, Jason Paul Williams, Joseph R. Duggan
  • Publication number: 20170099749
    Abstract: A flexible thermal conduit runs from a first housing portion of an electronic device to a second housing portion of the electronic device, to convey heat generated by an electronic component located in the first housing portion to a heat dissipation structure located in the second housing portion, where the second housing portion is flexibly coupled to the first housing portion, for example, by a hinge or other type of joint. The flexible conduit may include a plurality of layers of thin, flat thermally conductive material, which may be arranged to flex independently of each other in the region where the first and second housing portions are coupled.
    Type: Application
    Filed: December 14, 2016
    Publication date: April 6, 2017
    Inventors: Michael Nikkhoo, Doug Heirich, Roy Riccomini, Maosheng Ye, Michael Beerman, Joseph Daniel Taylor
  • Patent number: 9585285
    Abstract: A flexible thermal conduit runs from a first housing portion of an electronic device to a second housing portion of the electronic device, to convey heat generated by an electronic component located in the first housing portion to a heat dissipation structure located in the second housing portion, where the second housing portion is flexibly coupled to the first housing portion, for example, by a hinge or other type of joint. The flexible conduit may include a plurality of layers of thin, flat thermally conductive material, which may be arranged to flex independently of each other in the region where the first and second housing portions are coupled.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: February 28, 2017
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Michael Nikkhoo, Doug Heirich, Roy Riccomini, Maosheng Ye, Michael Beerman, Andrew Hodge
  • Patent number: 9545030
    Abstract: A flexible thermal conduit runs from a first housing portion of an electronic device to a second housing portion of the electronic device, to convey heat generated by an electronic component located in the first housing portion to a heat dissipation structure located in the second housing portion, where the second housing portion is flexibly coupled to the first housing portion, for example, by a hinge or other type of joint. The flexible conduit may include a plurality of layers of thin, flat thermally conductive material, which may be arranged to flex independently of each other in the region where the first and second housing portions are coupled.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: January 10, 2017
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Michael Nikkhoo, Doug Heirich, Roy Riccomini, Maosheng Ye, Michael Beerman, Joseph Daniel Taylor
  • Publication number: 20160212889
    Abstract: A flexible thermal conduit runs from a first housing portion of an electronic device to a second housing portion of the electronic device, to convey heat generated by an electronic component located in the first housing portion to a heat dissipation structure located in the second housing portion, where the second housing portion is flexibly coupled to the first housing portion, for example, by a hinge or other type of joint. The flexible conduit may include a plurality of layers of thin, flat thermally conductive material, which may be arranged to flex independently of each other in the region where the first and second housing portions are coupled.
    Type: Application
    Filed: May 6, 2015
    Publication date: July 21, 2016
    Inventors: Michael Nikkhoo, Doug Heirich, Roy Riccomini, Maosheng Ye, Michael Beerman, Joseph Daniel Taylor
  • Publication number: 20160212879
    Abstract: A flexible thermal conduit runs from a first housing portion of an electronic device to a second housing portion of the electronic device, to convey heat generated by an electronic component located in the first housing portion to a heat dissipation structure located in the second housing portion, where the second housing portion is flexibly coupled to the first housing portion, for example, by a hinge or other type of joint. The flexible conduit may include a plurality of layers of thin, flat thermally conductive material, which may be arranged to flex independently of each other in the region where the first and second housing portions are coupled.
    Type: Application
    Filed: May 6, 2015
    Publication date: July 21, 2016
    Inventors: Michael Nikkhoo, Doug Heirich, Roy Riccomini, Maosheng Ye, Michael Beerman, Andrew Hodge
  • Patent number: 8292232
    Abstract: A satellite recovery apparatus having a base configured to be attached to a satellite and having a pressurized gas chamber and a valve assembly. A plurality of walls are hingedly attached to the base and movable between a closed position, wherein the walls define a volume above the base, and an open position, wherein the walls are disposed spaced away from the base. A heat shield is attached to the base. A deployable decelerator is attached to the heat shield and has an outer perimeter with an expandable torus that is operably connected to the valve assembly such that the expandable torus can be pressurized from the chamber. Pressurization of the expandable torus deploys the decelerator assembly from a non-deployed position within the volume to a deployed high-drag position.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: October 23, 2012
    Assignee: Andrews Space, Inc.
    Inventors: Dana G. Andrews, Michael Beerman, Kevin A. Brown, Jeffrey H. Cannon, Krissa E. Watry, Jason Andrews