Patents by Inventor Michael Bork

Michael Bork has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240125676
    Abstract: A flow device, method, and system are provided for determining the fluid particle composition. An example flow device includes a fluid sensor configured to monitor at least one particle characteristic of fluid flowing through the fluid sensor. The example flow device also includes at least one processor configured to, upon determining the at least one particle characteristic satisfies a particle criteria, generate a control signal for an external device. The example flow device also includes a fluid composition sensor configured to be powered based on the control signal and further configured to capture data relating to the fluid particle composition. The example flow device is also configured to generate one or more particle profiles of at least one component of the fluid based on the data captured by the fluid composition sensor.
    Type: Application
    Filed: December 28, 2023
    Publication date: April 18, 2024
    Inventors: Andy Walker Brown, Adam D. McBrady, Ryadh Abdullah Zakaria, Stephan Michael Bork
  • Publication number: 20240044767
    Abstract: Various embodiments described herein relate to apparatuses and methods for detecting fluid particles and their characteristics. In various embodiments, a device for detecting fluid particles and their characteristics may comprise a fluid composition sensor configured to receive a volume of fluid. The fluid composition sensor has a collection media housing configured to receive a portion of a collection media, a pump for moving a volume of fluid over the collection media housing, an imaging device configured to capture an image of particles on the collection media, and a particle matter mass concentration calculation circuitry configured to calculate a total particle matter mass. The particle matter mass concentration calculation circuitry is connected with the imaging device and the pump. The particle matter mass concentration calculation circuitry is configured to adjust the volume of fluid over the collection media housing.
    Type: Application
    Filed: October 10, 2023
    Publication date: February 8, 2024
    Inventors: Adam Dewey MCBRADY, Stephan Michael BORK
  • Patent number: 11892385
    Abstract: A flow device, method, and system are provided for determining the fluid particle composition. An example flow device includes a fluid sensor configured to monitor at least one particle characteristic of fluid flowing through the fluid sensor. The example flow device also includes at least one processor configured to, upon determining the at least one particle characteristic satisfies a particle criteria, generate a control signal for an external device. The example flow device also includes a fluid composition sensor configured to be powered based on the control signal and further configured to capture data relating to the fluid particle composition. The example flow device is also configured to generate one or more particle profiles of at least one component of the fluid based on the data captured by the fluid composition sensor.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: February 6, 2024
    Assignee: Honeywell International Inc.
    Inventors: Andy Walker Brown, Adam D. McBrady, Ryadh Abdullah Zakaria, Stephan Michael Bork
  • Patent number: 11835432
    Abstract: Various embodiments described herein relate to apparatuses and methods for detecting fluid particles and their characteristics. In various embodiments, a device for detecting fluid particles and their characteristics may comprise a fluid composition sensor configured to receive a volume of fluid. The fluid composition sensor has a collection media housing configured to receive a portion of a collection media, a pump for moving a volume of fluid over the collection media housing, an imaging device configured to capture an image of particles on the collection media, and a particle matter mass concentration calculation circuitry configured to calculate a total particle matter mass. The particle matter mass concentration calculation circuitry is connected with the imaging device and the pump. The particle matter mass concentration calculation circuitry is configured to adjust the volume of fluid over the collection media housing.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: December 5, 2023
    Assignee: Honeywell International Inc.
    Inventors: Adam Dewey McBrady, Stephan Michael Bork
  • Publication number: 20220364973
    Abstract: Various embodiments are directed to a device for detecting fluid particle characteristics comprising: a collection fluid dispense assembly configured to selectively dispense a volume of collection fluid onto an absorbent media disposed within an internal sensor portion of a fluid composition sensor, producing a collection media based on interaction between the volume of collection fluid and the absorbent media; and a controller configured to determine, based on a particle image captured by an imaging device, a particle characteristic associated with a particle captured at the collection media.
    Type: Application
    Filed: May 13, 2021
    Publication date: November 17, 2022
    Inventors: Ronald W. MYERS, Andy Walker BROWN, Stephan Michael BORK
  • Publication number: 20220357261
    Abstract: Various embodiments are directed to a device for detecting a particle liquid content characteristic comprising: one or more fluid flow device inlets configured to receive at least one fluid sample comprising a first plurality of particles and a second plurality of particles, the device being configured to determine a particle liquid content characteristic based at least in part on a comparison of first particle data and second particle data. In various embodiments, the device may comprise a heating element configured to heat at least a portion of particles within the second fluid sample. In various embodiments, the device may comprise a fluid sensor configured to generate first particle data using an optical scattering operation and a fluid composition sensor configured to generate second particle data using a particle imaging operation. Various embodiments are directed to systems and methods for controlling a fluid flow monitoring system.
    Type: Application
    Filed: May 7, 2021
    Publication date: November 10, 2022
    Inventors: Andy Walker Brown, Adam D. McBrady, Stephan Michael Bork
  • Patent number: 11326999
    Abstract: A device and a method for detecting fluid particle characteristics. The device comprises a fluid composition sensor configured to receive a volume of fluid and a controller. The fluid composition sensor comprises a collection media configured to receive one or more particles of a plurality of particles within the fluid; and an imaging device configured to capture an image of one or more particles of the plurality of particles received by the collection media. The controller is configured to determine a particle impaction depth of each of the one or more particles of the plurality of particles within the collection media; and, based at least in part on the particle impaction depth of each of the one or more particles of the plurality of particles, determine a particulate matter mass concentration within the volume of fluid.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: May 10, 2022
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Andy Walker Brown, Adam D. McBrady, Stephan Michael Bork
  • Publication number: 20220128447
    Abstract: Various embodiments described herein relate to apparatuses and methods for detecting fluid particles and their characteristics. In various embodiments, a device for detecting fluid particles and their characteristics may comprise a fluid composition sensor configured to receive a volume of fluid. The fluid composition sensor has a collection media housing configured to receive a portion of a collection media, a pump for moving a volume of fluid over the collection media housing, an imaging device configured to capture an image of particles on the collection media, and a particle matter mass concentration calculation circuitry configured to calculate a total particle matter mass. The particle matter mass concentration calculation circuitry is connected with the imaging device and the pump. The particle matter mass concentration calculation circuitry is configured to adjust the volume of fluid over the collection media housing.
    Type: Application
    Filed: October 26, 2020
    Publication date: April 28, 2022
    Inventors: Adam Dewey MCBRADY, Stephan Michael BORK
  • Publication number: 20210164878
    Abstract: A flow device, method, and system are provided for determining the fluid particle composition. An example flow device includes a fluid sensor configured to monitor at least one particle characteristic of fluid flowing through the fluid sensor. The example flow device also includes at least one processor configured to, upon determining the at least one particle characteristic satisfies a particle criteria, generate a control signal for an external device. The example flow device also includes a fluid composition sensor configured to be powered based on the control signal and further configured to capture data relating to the fluid particle composition. The example flow device is also configured to generate one or more particle profiles of at least one component of the fluid based on the data captured by the fluid composition sensor.
    Type: Application
    Filed: November 30, 2020
    Publication date: June 3, 2021
    Inventors: Andy Walker Brown, Adam D. McBrady, Ryadh Abdullah Zakaria, Stephan Michael Bork
  • Publication number: 20210033514
    Abstract: A device and a method for detecting fluid particle characteristics. The device comprises a fluid composition sensor configured to receive a volume of fluid and a controller. The fluid composition sensor comprises a collection media configured to receive one or more particles of a plurality of particles within the fluid; and an imaging device configured to capture an image of one or more particles of the plurality of particles received by the collection media. The controller is configured to determine a particle impaction depth of each of the one or more particles of the plurality of particles within the collection media; and, based at least in part on the particle impaction depth of each of the one or more particles of the plurality of particles, determine a particulate matter mass concentration within the volume of fluid.
    Type: Application
    Filed: September 22, 2020
    Publication date: February 4, 2021
    Inventors: Andy Walker Brown, Adam D. McBrady, Stephan Michael Bork
  • Patent number: 10876949
    Abstract: A flow device, method, and system are provided for determining the fluid particle composition. An example flow device includes a fluid sensor configured to monitor at least one particle characteristic of fluid flowing through the fluid sensor. The example flow device also includes at least one processor configured to, upon determining the at least one particle characteristic satisfies a particle criteria, generate a control signal for an external device. The example flow device also includes a fluid composition sensor configured to be powered based on the control signal and further configured to capture data relating to the fluid particle composition. The example flow device is also configured to generate one or more particle profiles of at least one component of the fluid based on the data captured by the fluid composition sensor.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: December 29, 2020
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Andy Walker Brown, Adam D. McBrady, Ryadh Abdullah Zakaria, Stephan Michael Bork
  • Publication number: 20200340900
    Abstract: A flow device, method, and system are provided for determining the fluid particle composition. An example flow device includes a fluid sensor configured to monitor at least one particle characteristic of fluid flowing through the fluid sensor. The example flow device also includes at least one processor configured to, upon determining the at least one particle characteristic satisfies a particle criteria, generate a control signal for an external device. The example flow device also includes a fluid composition sensor configured to be powered based on the control signal and further configured to capture data relating to the fluid particle composition. The example flow device is also configured to generate one or more particle profiles of at least one component of the fluid based on the data captured by the fluid composition sensor.
    Type: Application
    Filed: April 26, 2019
    Publication date: October 29, 2020
    Inventors: Andy Walker Brown, Adam D. McBrady, Ryadh Abdullah Zakaria, Stephan Michael Bork
  • Patent number: 10794810
    Abstract: A device and a method for detecting fluid particle characteristics. The device comprises a fluid composition sensor configured to receive a volume of fluid and a controller. The fluid composition sensor comprises a collection media configured to receive one or more particles of a plurality of particles within the fluid; and an imaging device configured to capture an image of one or more particles of the plurality of particles received by the collection media. The controller is configured to determine a particle impaction depth of each of the one or more particles of the plurality of particles within the collection media; and, based at least in part on the particle impaction depth of each of the one or more particles of the plurality of particles, determine a particulate matter mass concentration within the volume of fluid.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: October 6, 2020
    Assignee: Honeywell International Inc.
    Inventors: Andy Walker Brown, Adam D. McBrady, Stephan Michael Bork
  • Publication number: 20110183403
    Abstract: A method for cell disruption of biogenic suspended raw materials by means of a combination of pressurization, atomization and decompression with a subsequent selective extraction and separation of cellular valuable substances includes at least one reservoir cubicle serving as reservoir for a suspension composed of biogenic raw material and at least another reservoir cubicle utilized as reservoir for a solvent. A cellular extract is produced in one unit for cell disruption, and is subsequently flown through by a gas in an extraction stage. The gas burdened with cellular valuable substances is separated from the cellular valuable substances in a separation stage by lowering the pressure. The suspension includes biogenic raw material pressurized to a pressure of 100-2500 bar by a device for pressure boosting. The solvent is pressurized to a pressure of 100-2500 bar by a device for pressure boosting.
    Type: Application
    Filed: August 6, 2009
    Publication date: July 28, 2011
    Applicant: UHDE HIGH PRESSURE TECHNOLOGIES GMBH
    Inventors: Heribert Dierkes, Volkmar Steinhagen, Michael Bork, Christoph Luetge, Zeliko Knez
  • Publication number: 20100136190
    Abstract: The invention relates to an extraction method for producing soluble substances from organic plant or animal raw material with high pressure, wherein supercritical gas is used as a solvent and wherein the organic material is filled into one or a plurality of high pressure reservoirs. The high pressure reservoirs are closed and a pressure of more than 800 bar is subsequently applied. In an extraction step, the supercritical gas flows at least once through the filled high pressure reservoir, wherein no additional entraining agent is added to the supercritical gas. Subsequently the charged supercritical gas is fed completely or partially to a separation stage, wherein natural substances or substance mixtures are reacted or separated from each other by lowering the pressure. The pressure in the extraction stage exceeds the maximum solubility pressure of the oil or fat of the raw material in the supercritical gas at least by 10%. The respective oil or fat of the raw material serves as the entraining agent.
    Type: Application
    Filed: November 21, 2007
    Publication date: June 3, 2010
    Inventors: Michael Bork, Christoph Luetge
  • Publication number: 20100129509
    Abstract: In a method for extracting products of value from animal or vegetable starting material, a solution is to be created, with which extraction is improved, with regard to both the yield and separation of natural products to be extracted, and management of the method. This is achieved in that soluble constituents are extracted from the starting material in a first extraction step, using CO2, and subsequently, in a second extraction step, other constituents are extracted with compressed hydrocarbons.
    Type: Application
    Filed: June 13, 2008
    Publication date: May 27, 2010
    Inventors: Heribert Dierkes, Volkmar Steinhagen, Michael Bork, Christoph Lütge, Zeljko Knez
  • Publication number: 20080034509
    Abstract: The invention relates to a method for suspending and introducing solid matter in a high-pressure process, for example colorant pigments in a high-pressure process, in which a supercritical fluid is used as the process medium and a pressure in excess of 150 bar prevails. According to the invention, the suspension of the solid matter takes place at a low-pressure in a completely separate suspension method. In the latter, the solid matter is suspended or partially dissolved in a non-critical, liquid gas. The pressure in said suspension method is less than 90% of the critical pressure of the liquid gas. The suspension is introduced into the high-pressure process by means of a pump.
    Type: Application
    Filed: March 16, 2005
    Publication date: February 14, 2008
    Inventors: Peter Nuennerich, Heribert Dierkes, Michael Bork
  • Patent number: 5953780
    Abstract: The present invention relates to a method of and an apparatus for treating of textile substrates with a supercritical fluid. The textile substrates are formed as spools of yarn or rolled webs, and the supercritical fluid flows over and/or through them substantially perpendicular to their spool or winding axis. At that, the treatment temperature assumes different values during the treatment period. It is provided that during the treatment period, the treatment temperature values are set by at least two functions of the treatment time, and that the supercritical fluid is conditioned differently at the time the following function takes effect.
    Type: Grant
    Filed: April 15, 1998
    Date of Patent: September 21, 1999
    Assignee: Krupp Uhde GmbH
    Inventors: Eckhard Schollmeyer, Elke Bach, Ernst Cleve, Michael Bork, Martin Steinhauer, Jorg-Peter Korner