Patents by Inventor Michael C. Bradford

Michael C. Bradford has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180171857
    Abstract: The present disclosure provides a method of producing an insulation preform having graded porosity for an exhaust treatment component of a vehicle. The method includes obtaining a first granular insulating material having a first diameter, a second granular insulating material having a second diameter less than the first diameter, an inorganic binder, and water. The method further includes producing a slurry comprising the first granular insulating material, the second granular insulating material, the inorganic binder, and water. The slurry is introduced into a mold having at least one surface adapted for vacuum extraction. A liquid phase of the slurry is evacuated from the mold using vacuum extraction to produce a moist preform. The moist preform has graded porosity such that a greater concentration of the second insulation material is adjacent to the at least one surface than the first insulating material. The moist preform is heated to produce the insulation preform.
    Type: Application
    Filed: December 21, 2016
    Publication date: June 21, 2018
    Inventors: Thomas M. HARRIS, Bradley FINGLAND, Michael C. BRADFORD, Adam J. KOTRBA
  • Publication number: 20170241317
    Abstract: An exhaust after-treatment system for treating an exhaust produced by an engine. The exhaust after-treatment system includes an exhaust passage, at least one catalytic exhaust after-treatment component in communication with the exhaust passage for treating the exhaust, and a water-removal device in communication with the exhaust passage that receives a portion of the exhaust therein at a location positioned upstream from the catalytic exhaust after-treatment component. The water-removal device is defined by a housing that includes a water-removal membrane that separates water from the portion of the exhaust to provide a permeate that is enriched with water, and to produce a retentate that is water depleted that facilitates the treating of the exhaust by the catalytic exhaust after-treatment component.
    Type: Application
    Filed: February 23, 2016
    Publication date: August 24, 2017
    Inventor: Michael C. BRADFORD
  • Publication number: 20170204762
    Abstract: An after-treatment system including an exhaust treatment component provided in an exhaust passage, a tank carrying an aqueous reagent, and an electrochemical cell in communication with the tank and configured to receive the aqueous reagent therefrom. The electrochemical cell is configured to convert the aqueous reagent into a first exhaust treatment fluid and a second exhaust treatment fluid. A controller is in communication with the electrochemical cell. The controller is configured to vary amounts and/or composition of each of the first exhaust treatment fluid and the second exhaust treatment fluid produced by the electrochemical cell. An injector is in communication with the electrochemical cell and the exhaust passage, and is configured to receive one of the first exhaust treatment fluid or the second exhaust treatment fluid from the electrochemical cell, and dose the one exhaust treatment fluid into the exhaust passage at a location upstream from the exhaust treatment component.
    Type: Application
    Filed: January 20, 2016
    Publication date: July 20, 2017
    Inventors: Adam J. KOTRBA, Padmanabha Reddy ETTIREDDY, Michael GOLIN, Michael C. BRADFORD, Bradley FINGLAND
  • Patent number: 9702291
    Abstract: An exhaust aftertreatment system may include a reductant tank, a reactor system, a storage tank, a first conduit and a second conduit. The reactor system may receive reductant from the reductant tank and may output a gas comprising ammonia. The storage tank may receive gas comprising ammonia from the reactor system and may store a volume of gas comprising ammonia. The first conduit may communicate gas comprising ammonia from the reactor system to a stream of exhaust gas. The first conduit may bypass the storage tank. The second conduit may communicate gas comprising ammonia from the storage tank to the stream of exhaust gas.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: July 11, 2017
    Assignee: Tenneco Automotive Operating Company Inc.
    Inventors: Padmanabha R. Ettireddy, Bradley Fingland, Adam J. Kotrba, John W. Degeorge, Michael C. Bradford
  • Publication number: 20170130627
    Abstract: An exhaust after-treatment system for treating an exhaust produced by an engine. The exhaust after-treatment system includes an exhaust passage, a catalytic exhaust after-treatment component in communication with the exhaust passage for treating the exhaust, and a metal hydride module in communication with the exhaust passage that receives a portion of the exhaust therein at a location positioned upstream from the catalytic exhaust after-treatment component. The portion of the exhaust that enters the metal hydride module reacts with a metal hydride contained in the metal hydride module to produce hydrogen gas that facilitates the treating of the exhaust by the catalytic exhaust after-treatment component.
    Type: Application
    Filed: November 10, 2015
    Publication date: May 11, 2017
    Inventor: Michael C. BRADFORD
  • Publication number: 20170122169
    Abstract: An exhaust aftertreatment system may include a reductant tank, a reactor system, a storage tank, a first conduit and a second conduit. The reactor system may receive reductant from the reductant tank and may output a gas comprising ammonia. The storage tank may receive gas comprising ammonia from the reactor system and may store a volume of gas comprising ammonia. The first conduit may communicate gas comprising ammonia from the reactor system to a stream of exhaust gas. The first conduit may bypass the storage tank. The second conduit may communicate gas comprising ammonia from the storage tank to the stream of exhaust gas.
    Type: Application
    Filed: November 3, 2015
    Publication date: May 4, 2017
    Inventors: Padmanabha R. ETTIREDDY, Bradley FINGLAND, Adam J. KOTRBA, John W. DEGEORGE, Michael C. BRADFORD
  • Patent number: 9415569
    Abstract: A method of bonding a first substrate to a second substrate includes providing a glass, applying the glass in a layer between the first and second substrates to form an assembly, and heating the assembly to a bonding temperature above a glass transition temperature of the devitrifying glass, selected to cause the glass to bond the first substrate to the second substrate. The devitrifying glass has constituents that include various amounts of group A in a molar concentration of 70-95%, group B in a molar concentration of 5-20%, group C in a molar concentration of 1-20%, group D in a molar concentration of 0-6%; and group E in a molar concentration of 0-10%. The group A, B, C, D and E groups are disclosed herein.
    Type: Grant
    Filed: January 4, 2014
    Date of Patent: August 16, 2016
    Assignee: ROBERT BOSCH GMBH
    Inventors: Mohammad Masyood Akhtar, Samuel B. Schaevitz, Michael C. Bradford, Zachary Byars, Joseph C. Tucker
  • Patent number: 9147899
    Abstract: A fuel cell system having an air quality sensor suite includes a fuel cell having an anode and a cathode, a fuel source providing a fuel flow, a fuel flow rate sensor having a fuel flow rate sensor output, a fuel flow control device, a fuel oxidizer flow conduit, a first mixing region coupled to the fuel source and the fuel oxidizer flow conduit, an anode chamber coupled to the anode, a combustion oxidizer flow conduit, a second mixing region coupled to the combustion oxidizer flow conduit, and at least one oxidizer flow rate sensor having an oxidizer flow rate sensor output. The system further includes at least one oxidizer pump, an air quality sensor having an air quality sensor output, and a control system coupled to the fuel flow rate sensor output, the oxidizer flow rate sensor output, and the air quality sensor output.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: September 29, 2015
    Inventors: Samuel B. Schaevitz, Armin B. Kusig, Alan P. Ludwiszewski, John A. Rule, Michael C. Bradford
  • Publication number: 20140193643
    Abstract: A method of bonding a first substrate to a second substrate includes providing a glass, applying the glass in a layer between the first and second substrates to form an assembly, and heating the assembly to a bonding temperature above a glass transition temperature of the devitrifying glass, selected to cause the glass to bond the first substrate to the second substrate. The devitrifying glass has constituents that include various amounts of group A in a molar concentration of 70-95%, group B in a molar concentration of 5-20%, group C in a molar concentration of 1-20%, group D in a molar concentration of 0-6%; and group E in a molar concentration of 0-10%. The group A, B, C, D and E groups are disclosed herein.
    Type: Application
    Filed: January 4, 2014
    Publication date: July 10, 2014
    Applicant: LILLIPUTIAN SYSTEMS, INC.
    Inventors: Mohammad Masyood Akhtar, Samuel B. Schaevitz, Michael C. Bradford, Zachary Byars, Joseph C. Tucker
  • Patent number: 7335295
    Abstract: There is provided a coated zeolite catalyst in which the accessibility of the acid sites on the external surfaces of the zeolite is controlled and a process for converting hydrocarbons utilizing the coated zeolite catalyst. The zeolite catalyst comprises core crystals of a first zeolite and a discontinuous layer of smaller size second crystals of a second zeolite which cover at least a portion of the external surface of the first crystals The coated zeolite catalyst finds particular application in hydrocarbon conversion processes where catalyst activity in combination with zeolite structure are important for reaction selectivity, e.g., catalytic cracking, alkylation, disproportional of toluene, isomerization, and transalkylation reactions.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: February 26, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jannetje Maatje van den Berge, Gary David Mohr, Kenneth Ray Clem, Wilfried Jozef Mortier, Machteld Maria Mertens, Michael C. Bradford
  • Patent number: 6812181
    Abstract: There is provided a coated zeolite catalyst in which the accessibility of the acid sites on the external surfaces of the zeolite is controlled and a process for converting hydrocarbons utilizing the coated zeolite catalyst. The zeolite catalyst comprises core crystals of a first zeolite and a discontinuous layer of smaller size second crystals of a second zeolite which cover at least a portion of the external surface of the first crystals The coated zeolite catalyst finds particular application in hydrocarbon conversion processes where catalyst activity in combination with zeolite structure are important for reaction selectivity, e.g., catalytic cracking, alkylation, disproportional of toluene, isomerization, and transalkylation reactions.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: November 2, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jannetje Maatje van der Berge, Gary David Mohr, Kenneth Ray Clem, Wilfried Jozef Mortier, Machteld Maria Mertens, Michael C. Bradford
  • Publication number: 20030121827
    Abstract: There is provided a coated zeolite catalyst in which the accessibility of the acid sites on the external surfaces of the zeolite is controlled and a process for converting hydrocarbons utilizing the coated zeolite catalyst. The zeolite catalyst comprises core crystals of a first zeolite and a discontinuous layer of smaller size second crystals of a second zeolite which cover at least a portion of the external surface of the first crystals The coated zeolite catalyst finds particular application in hydrocarbon conversion processes where catalyst activity in combination with zeolite structure are important for reaction selectivity, e.g., catalytic cracking, alkylation, disproportional of toluene, isomerization, and transalkylation reactions.
    Type: Application
    Filed: December 4, 2002
    Publication date: July 3, 2003
    Inventors: Jannetje Maatje van den Berge, Gary David Mohr, Kenneth Ray Clem, Wilfried Jozef Mortier, Machteld Maria Mertens, Michael C. Bradford
  • Patent number: 6504074
    Abstract: There is provided a coated zeolite catalyst in which the accessibility of the acid sites on the external surfaces of the zeolite is controlled and a process for converting hydrocarbons utilizing the coated zeolite catalyst. The zeolite catalyst comprises core crystals of a first zeolite and a discontinuous layer of smaller size second crystals of a second zeolite which cover at least a portion of the external surface of the first crystals The coated zeolite catalyst finds particular application in hydrocarbon conversion processes where catalyst activity in combination with zeolite structure are important for reaction selectivity, e.g., catalytic cracking, alkylation, disproportional of toluene, isomerization, and transalkylation reactions.
    Type: Grant
    Filed: December 3, 1998
    Date of Patent: January 7, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Johannes P. Verduijn, Gary David Mohr, Kenneth Ray Clem, Wilfried Jozef Mortier, Machteld Maria Mertens, Michael C. Bradford
  • Publication number: 20020082460
    Abstract: There is provided a coated zeolite catalyst in which the accessibility of the acid sites on the external surfaces of the zeolite is controlled and a process for converting hydrocarbons utilizing the coated zeolite catalyst. The zeolite catalyst comprises core crystals of a first zeolite and a discontinuous layer of smaller size second crystals of a second zeolite which cover at least a portion of the external surface of the first crystals The coated zeolite catalyst finds particular application in hydrocarbon conversion processes where catalyst activity in combination with zeolite structure are important for reaction selectivity, e.g., catalytic cracking, alkylation, disproportional of toluene, isomerization, and transalkylation reactions.
    Type: Application
    Filed: December 3, 1998
    Publication date: June 27, 2002
    Inventors: JOHANNES P. VERDUIJN, JANNETJE VAN DEN BERGE, GARY DAVID MOHR, KENNETH RAY CLEM, WILFRIED JOZEF MORTIER, MACHTELD MARIA MERTENS, MICHAEL C. BRADFORD