Patents by Inventor Michael Curtis Parris

Michael Curtis Parris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9557364
    Abstract: System and method for testing the reliability of a fuse blow condition. The fuse blow detection circuit includes a fuse circuit comprising a fuse having a first end coupled to ground. A common node is coupled to the second end of the fuse. A pre-charge circuit is coupled to the common node for pre-charging the common node to a pre-charged HIGH level. An inverter includes an inverter output and an inverter input, wherein the inverter input is coupled to the common node. A feedback latch is coupled between a voltage source and ground, and includes a latch input that is coupled to the inverter output and a latch output coupled to the common node. A test circuit is included that is coupled to the common node, wherein in a normal mode the test circuit adds strength to the feedback latch for purposes of maintaining the common node at the pre-charged HIGH level, such that in a test mode the feedback latch is weaker than in the normal mode for purposes of maintaining the common node at the pre-charged HIGH level.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: January 31, 2017
    Assignee: TESSERA, INC.
    Inventor: Michael Curtis Parris
  • Patent number: 9230814
    Abstract: Vertically fabricated non-volatile memory devices having capacitive coupling between a drain region and a floating gate. A two terminal programmable non-volatile device includes a floating gate disposed vertically about a substrate, wherein the floating gate comprises a first side, a second side, and a bottom portion. A source region is coupled to a first terminal and formed adjacent to the first side of the floating gate. A drain region is coupled to a second terminal and formed adjacent to the second side of the floating gate. The non-volatile device includes a channel coupling the source region and drain region for programming and erasing operations. The drain region is capacitively coupled to the floating gate.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: January 5, 2016
    Assignee: INVENSAS CORPORATION
    Inventors: David Edward Fisch, Michael Curtis Parris
  • Patent number: 8970003
    Abstract: System and method for embedded passive integration relating to a multi-chip packaged device. The packaged device includes a capacitance layer that is configured for electrical coupling to a power supply and to a reference power supply. Further, the capacitance layer is configured for filtering the power supply and providing a filtered power supply. A semiconductor layer including a logic device is configured for electrical coupling to the filtered power supply.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: March 3, 2015
    Assignee: Tessera, Inc.
    Inventor: Michael Curtis Parris
  • Patent number: 8873302
    Abstract: An array of memory cells, in which one or more memory cells have a common doped region. Each memory cell includes a transistor with a floating gate, source and drain regions, and separate gate and drain voltage controls. Each memory cell also includes a coupling capacitor electrically coupled to and located laterally from the floating gate. In the array, first bit lines are oriented in a first direction, wherein a first bit line is coupled to drain regions of transistors that are arranged in a column. The array includes second bit lines also oriented in the first direction, wherein a second bit line is coupled to source regions of transistors that are arranged in a column. The array also includes word lines oriented in a second direction, wherein each word line is coupled to control gates of coupling capacitors that are arranged in a row.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: October 28, 2014
    Assignee: Invensas Corporation
    Inventors: David Edward Fisch, William C. Plants, Michael Curtis Parris
  • Publication number: 20140253145
    Abstract: System and method for testing the reliability of a fuse blow condition. The fuse blow detection circuit includes a fuse circuit comprising a fuse having a first end coupled to ground. A common node is coupled to the second end of the fuse. A pre-charge circuit is coupled to the common node for pre-charging the common node to a pre-charged HIGH level. An inverter includes an inverter output and an inverter input, wherein the inverter input is coupled to the common node. A feedback latch is coupled between a voltage source and ground, and includes a latch input that is coupled to the inverter output and a latch output coupled to the common node. A test circuit is included that is coupled to the common node, wherein in a normal mode the test circuit adds strength to the feedback latch for purposes of maintaining the common node at the pre-charged HIGH level, such that in a test mode the feedback latch is weaker than in the normal mode for purposes of maintaining the common node at the pre-charged HIGH level.
    Type: Application
    Filed: May 23, 2014
    Publication date: September 11, 2014
    Applicant: TESSERA, INC.
    Inventor: Michael Curtis Parris
  • Patent number: 8736278
    Abstract: System and method for testing the reliability of a fuse blow condition. The fuse blow detection circuit includes a fuse circuit comprising a fuse having a first end coupled to ground. A common node is coupled to the second end of the fuse. A pre-charge circuit is coupled to the common node for pre-charging the common node to a pre-charged HIGH level. An inverter includes an inverter output and an inverter input, wherein the inverter input is coupled to the common node. A feedback latch is coupled between a voltage source and ground, and includes a latch input that is coupled to the inverter output and a latch output coupled to the common node. A test circuit is included that is coupled to the common node, wherein in a normal mode the test circuit adds strength to the feedback latch for purposes of maintaining the common node at the pre-charged HIGH level, such that in a test mode the feedback latch is weaker than in the normal mode for purposes of maintaining the common node at the pre-charged HIGH level.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: May 27, 2014
    Assignee: Tessera Inc.
    Inventor: Michael Curtis Parris
  • Publication number: 20130107635
    Abstract: An array of memory cells, in which one or more memory cells have a common doped region. Each memory cell includes a transistor with a floating gate, source and drain regions, and separate gate and drain voltage controls. Each memory cell also includes a coupling capacitor electrically coupled to and located laterally from the floating gate. In the array, first bit lines are oriented in a first direction, wherein a first bit line is coupled to drain regions of transistors that are arranged in a column. The array includes second bit lines also oriented in the first direction, wherein a second bit line is coupled to source regions of transistors that are arranged in a column. The array also includes word lines oriented in a second direction, wherein each word line is coupled to control gates of coupling capacitors that are arranged in a row.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 2, 2013
    Applicant: INVENSAS CORPORATION
    Inventors: David Edward Fisch, William C. Plants, Michael Curtis Parris
  • Publication number: 20130107630
    Abstract: Vertically fabricated non-volatile memory devices having capacitive coupling between a drain region and a floating gate. A two terminal programmable non-volatile device includes a floating gate disposed vertically about a substrate, wherein the floating gate comprises a first side, a second side, and a bottom portion. A source region is coupled to a first terminal and formed adjacent to the first side of the floating gate. A drain region is coupled to a second terminal and formed adjacent to the second side of the floating gate. The non-volatile device includes a channel coupling the source region and drain region for programming and erasing operations. The drain region is capacitively coupled to the floating gate.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 2, 2013
    Applicant: INVENSAS CORPORATION
    Inventors: David Edward Fisch, Michael Curtis Parris
  • Publication number: 20130027899
    Abstract: System and method for embedded passive integration relating to a multi-chip packaged device. The packaged device includes a capacitance layer that is configured for electrical coupling to a power supply and to a reference power supply. Further, the capacitance layer is configured for filtering the power supply and providing a filtered power supply. A semiconductor layer including a logic device is configured for electrical coupling to the filtered power supply.
    Type: Application
    Filed: July 29, 2011
    Publication date: January 31, 2013
    Applicant: TESSERA, INC.
    Inventor: Michael Curtis Parris
  • Publication number: 20130027056
    Abstract: System and method for testing the reliability of a fuse blow condition. The fuse blow detection circuit includes a fuse circuit comprising a fuse having a first end coupled to ground. A common node is coupled to the second end of the fuse. A pre-charge circuit is coupled to the common node for pre-charging the common node to a pre-charged HIGH level. An inverter includes an inverter output and an inverter input, wherein the inverter input is coupled to the common node. A feedback latch is coupled between a voltage source and ground, and includes a latch input that is coupled to the inverter output and a latch output coupled to the common node. A test circuit is included that is coupled to the common node, wherein in a normal mode the test circuit adds strength to the feedback latch for purposes of maintaining the common node at the pre-charged HIGH level, such that in a test mode the feedback latch is weaker than in the normal mode for purposes of maintaining the common node at the pre-charged HIGH level.
    Type: Application
    Filed: July 29, 2011
    Publication date: January 31, 2013
    Applicant: TESSERA INC.
    Inventor: Michael Curtis Parris
  • Patent number: 6549470
    Abstract: A small signal, low power read data bus driver for integrated circuit devices incorporating memory arrays which advantageously utilizes non-precharged data lines and reduced output voltage swing to reduce power requirements, tri-stateable outputs to allow several circuits to be multiplexed on the same data line and provides a buffer between the sense amplifier and the data lines to improve data line switching speed.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: April 15, 2003
    Assignees: United Memories, Inc., Sony Corporation
    Inventors: Kim Carver Hardee, Michael Curtis Parris
  • Publication number: 20020136051
    Abstract: A small signal, low power read data bus driver for integrated circuit devices incorporating memory arrays which advantageously utilizes non-precharged data lines and reduced output voltage swing to reduce power requirements, tri-stateable outputs to allow several circuits to be multiplexed on the same data line and provides a buffer between the sense amplifier and the data lines to improve data line switching speed.
    Type: Application
    Filed: August 17, 2001
    Publication date: September 26, 2002
    Inventors: Kim Carver Hardee, Michael Curtis Parris