Patents by Inventor Michael D. Woods

Michael D. Woods has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7318717
    Abstract: A method and apparatus for combining raw fibrous and binding materials in a single mixing step (Step S3), followed by consolidation (Step S5) so as to greatly shorten the overall cycle time to a finished fiber-reinforced composite part. Chopped fibrous materials and binder materials are deposited sequentially onto a belt conveyor (Step S2) so that the materials are successively layered, one on top of each other in a predetermined ratio, and subsequently mixed (Step S3) to achieve uniform dispersion throughout. The mixed materials are then deposited into a rotating mold (Step S4) to further ensure uniform dispersion of fibrous and binder materials. Impregnation of the fibrous materials with the binder material occur in-situ as the uniformly mixed materials are heated and subsequently compacted in the mold (Step S5) to obtain the desired shape of the fiber-reinforced composite part.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: January 15, 2008
    Assignee: Honeywell International Inc.
    Inventors: Michael D. Wood, Mark L. LaForest, Neil Murdie, Dean S. Kriskovich, Vernon R. Hudalla, Thaddeus W. Gonsowski
  • Patent number: 7293489
    Abstract: A carrying case device for a circular saw and the method of interconnecting the circular saw with the carrying case device when the circular saw is in use. A case is provided having a top surface, wherein the case defines an internal area large enough to store the circular saw. A miter assembly is provided that is attached to the top surface of the case. The miter assembly can be rotated on the case. The miter assembly also includes a guide arm that can be lifted and closed about a hinge connection. The guide arm contains a mounting receptacle for selectively receiving and engaging the circular saw. As a result, the circular saw can be raised and lowered against a work piece as though it were a power miter saw.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: November 13, 2007
    Inventor: Michael D. Wood
  • Patent number: 7290655
    Abstract: A carrying case assembly for a power tool and the method of interconnecting the carrying case with the power tool. The carrying case has a plurality of sides that define an internal area. An attachment mechanism is disposed within the case along a first side. The attachment mechanism receives and retains the power tool. A slot is formed in the first side of the carrying case. The cutting element of the power tool extends through the slot and extends out of the carrying case. Power is provided within the carrying case to operate the power tool within the carrying case. Work guides are provided on the exterior of the carrying case that are used to help move material against the cutting element that extends out of the carrying case from the power tool.
    Type: Grant
    Filed: May 24, 2004
    Date of Patent: November 6, 2007
    Inventor: Michael D. Wood
  • Patent number: 7234571
    Abstract: A method and apparatus for combining raw fibrous and binding materials in a single mixing step (Step S3), followed by consolidation (Step S5) so as to greatly shorten the overall cycle time to a finished fiber-reinforced composite part. Chopped fibrous materials and binder materials are deposited sequentially onto a belt conveyor (Step S2) so that the materials are successively layered, one on top of each other in a predetermined ratio, and subsequently mixed (Step S3) to achieve uniform dispersion throughout. The mixed materials are then deposited into a rotating mold (Step S4) to further ensure uniform dispersion of fibrous and binder materials. Impregnation of the fibrous materials with the binder material occur in-situ as the uniformly mixed materials are heated and subsequently compacted in the mold (Step S5) to obtain the desired shape of the fiber-reinforced composite part.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: June 26, 2007
    Assignee: Honeywell International Inc.
    Inventors: Michael D. Wood, Mark L. LaForest, Neil Murdie, Dean S. Kriskovich, Vernon R. Hudalla, Thaddeus W. Gonsowski
  • Patent number: 7172408
    Abstract: A resin transfer molding (RTM) process is disclosed for rapidly filling a fibrous preform and/or a rigid, porous body with high viscosity resin or pitch. The process is suitable for impregnated multiple porous bodies stacked in a single mold. The process uses a fibrous preform or rigid porous body which is placed into a mold matching the desired part geometry. A resin is injected into the mold at temperature and pressure. After cooling, the infiltrated component is removed from the mold. The mold is constructed from two halves fitted to form at least one mold cavity. A gate fitted with a nozzle is set into one of the mold halves, and a valve admits resin or pitch into the gate area. Venting or vacuum can be applied to the mold. The mold is held in a hydraulic press and an extruder, optionally fitted with an accumulator, supplies molten resin or pitch to the mold.
    Type: Grant
    Filed: January 14, 2003
    Date of Patent: February 6, 2007
    Assignee: Honeywell International, Inc.
    Inventors: Michael D. Wood, Frank Dillon, Richard A. Heckelsberg, Roger W. Holloway, Mark L. LaForest, Neil Murdie, Charles A. Parker, James F. Pigford
  • Publication number: 20030127291
    Abstract: A method and apparatus for combining raw fibrous and binding materials in a single mixing step (Step S3), followed by consolidation (Step S5) so as to greatly shorten the overall cycle time to a finished fiber-reinforced composite part. Chopped fibrous materials and binder materials are deposited sequentially onto a belt conveyor (Step S2) so that the materials are successively layered, one on top of each other in a predetermined ratio, and subsequently mixed (Step S3) to achieve uniform dispersion throughout. The mixed materials are then deposited into a rotating mold (Step S4) to further ensure uniform dispersion of fibrous and binder materials. Impregnation of the fibrous materials with the binder material occur in-situ as the uniformly mixed materials are heated and subsequently compacted in the mold (Step S5) to obtain the desired shape of the fiber-reinforced composite part.
    Type: Application
    Filed: December 10, 2002
    Publication date: July 10, 2003
    Inventors: Michael D. Wood, Mark L. LaForest, Neil Murdie, Dean S. Kriskovich, Vernon R. Hudalla, Thaddeus W. Gonsowski
  • Publication number: 20030111752
    Abstract: A resin transfer molding (RTM) process is disclosed for rapidly filling a fibrous preform and/or a rigid, porous body with high viscosity resin or pitch. The process is suitable for impregnated multiple porous bodies stacked in a single mold. The process uses a fibrous preform or rigid porous body which is placed into a mold matching the desired part geometry. A resin is injected into the mold at temperature and pressure. After cooling, the infiltrated component is removed from the mold. The mold is constructed from two halves fitted to form at least one mold cavity. A gate fitted with a nozzle is set into one of the mold halves, and a valve admits resin or pitch into the gate area. Venting or vacuum can be applied to the mold. The mold is held in a hydraulic press and an extruder, optionally fitted with an accumulator, supplies molten resin or pitch to the mold.
    Type: Application
    Filed: January 14, 2003
    Publication date: June 19, 2003
    Inventors: Michael D. Wood, Frank Dillon, Richard A. Heckelsberg, Roger W. Holloway, Mark L. LaForest, Neil Murdie, Charles A. Parker, James F. Pigford
  • Publication number: 20030108635
    Abstract: A method and apparatus for combining raw fibrous and binding materials in a single mixing step (Step S3), followed by consolidation (Step S5) so as to greatly shorten the overall cycle time to a finished fiber-reinforced composite part. Chopped fibrous materials and binder materials are deposited sequentially onto a belt conveyor (Step S2) so that the materials are successively layered, one on top of each other in a predetermined ratio, and subsequently mixed (Step S3) to achieve uniform dispersion throughout. The mixed materials are then deposited into a rotating mold (Step S4) to further ensure uniform dispersion of fibrous and binder materials. Impregnation of the fibrous materials with the binder material occur in-situ as the uniformly mixed materials are heated and subsequently compacted in the mold (Step S5) to obtain the desired shape of the fiber-reinforced composite part.
    Type: Application
    Filed: December 10, 2002
    Publication date: June 12, 2003
    Inventors: Michael D. Wood, Mark L. LaForest, Neil Murdie, Dean S. Kriskovich, Vernon R. Hudalla, Thaddeus W. Gonsowski
  • Patent number: 6537470
    Abstract: A resin transfer molding (RTM) process is disclosed for rapidly filling a fibrous preform and/or a rigid, porous body with high viscosity resin or pitch. The process is suitable for impregnated multiple porous bodies stacked in a single mold. The process uses a fibrous preform or rigid porous body which is placed into a mold matching the desired part geometry. A resin is injected into the mold at temperature and pressure. After cooling, the infiltrated component is removed from the mold. The mold is constructed from two halves fitted to form at least one mold cavity. A gate fitted with a nozzle is set into one of the mold halves, and a valve admits resin or pitch into the gate area. Venting or vacuum can be applied to the mold. The mold is held in a hydraulic press and an extruder, optionally fitted with an accumulator, supplies molten resin or pitch to the mold.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: March 25, 2003
    Assignee: Honeywell International Inc.
    Inventors: Michael D. Wood, Frank Dillon, Richard A. Heckelsberg, Roger W. Holloway, Mark L. LaForest, Neil Murdie, Charles A. Parker, James F. Pigford
  • Patent number: 6521152
    Abstract: A method and apparatus for combining raw fibrous and binding materials in a single mixing step (Step S3), followed by consolidation (Step S5) so as to greatly shorten the overall cycle time to a finished fiber-reinforced composite part. Chopped fibrous materials and binder materials are deposited sequentially onto a belt conveyor (Step S2) so that the materials are successively layered, one on top of each other in a predetermined ratio, and subsequently mixed (Step S3) to achieve uniform dispersion throughout. The mixed materials are then deposited into a rotating mold (Step S4) to further ensure uniform dispersion of fibrous and binder materials. Impregnation of the fibrous materials with the binder material occur in-situ as the uniformly mixed materials are heated and subsequently compacted in the mold (Step S5) to obtain the desired shape of the fiber-reinforced composite part.
    Type: Grant
    Filed: March 16, 2000
    Date of Patent: February 18, 2003
    Assignee: Honeywell International Inc.
    Inventors: Michael D. Wood, Mark L. LaForest, Neil Murdie, Dean S. Kriskovich, Vernon R. Hudalla, Thaddeus W. Gonsowski
  • Publication number: 20020080950
    Abstract: A system and method for monitoring a service transaction are disclosed. A client communicates through a communication channel. Feedback is gathered from the client through the communication channel. The feedback describes an agent and an interaction associated with the agent, and is stored in a client response database.
    Type: Application
    Filed: December 21, 2000
    Publication date: June 27, 2002
    Applicant: Stratos Group, Ltd.;
    Inventors: John R. Koko, Lawrence M. Pensack, Larry T. Sutherland, Clifton F. Crawford, Michael D. Wood, Steven H. Levy, William C. Murray, Salah Boukadoum
  • Patent number: 6315974
    Abstract: A mesophase pitch material having a melting point in excess of 350° C. has a solvent added thereto to provide a solvated mesophase pitch. A low molecular weight solvent is used so that the melting point can be brought low enough to create a carbon foam at a convenient temperature. The solvent is then removed by heat and/or vacuum and, consequently, the pitch reverts to a high melting point of approximately greater than 350° C. The pitch can then be heated or carbonized without an oxidative stabilization step. Alternatively, a solvated mesophase pitch material may be used initially for foaming.
    Type: Grant
    Filed: July 10, 1998
    Date of Patent: November 13, 2001
    Assignee: AlliedSignal Inc.
    Inventors: Neil Murdie, James F. Pigford, Michael D. Wood, Frank Dillon, Charles A. Parker, Stanley N. Hemstad
  • Patent number: 6270555
    Abstract: This invention provides a method to control the off gas emission of sulfur dioxide from a mineral ore roaster by grinding a sulfur-containing mineral ore, adding sodium sesquicarbonate to the mineral ore, and roasting the ore and sodium sesquicarbonate at an elevated temperature.
    Type: Grant
    Filed: July 28, 2000
    Date of Patent: August 7, 2001
    Assignee: Solvay Minerals, Inc.
    Inventors: Michael D. Wood, Richard K. DeSomber, Danial L. Marshall
  • Patent number: 4637084
    Abstract: A crimping and cutting tool useable for cutting wire and connection of a ferrule tip type electrical connector to an electrically conductive wire. The tool includes first and second lever members pivotally connected with a pivot pin. Each lever member has a head with a cutting jaw and a crimping jaw and a handle. The crimping jaws have alternative teeth and recesses in opposition to one another. The crimping jaws are movable toward one another to crimping position by applying hand force on the levers wherein each of the teeth of one of the crimping jaws fills a recess of the opposite jaw. The recesses have differing sizes such that differing sizes of electrical connectors or ferrules can be accommodated in the recesses and crimped therein. Wire cutting jaws have convex curved cutting edges located above the pivot pin.
    Type: Grant
    Filed: December 6, 1984
    Date of Patent: January 20, 1987
    Inventor: Michael D. Wood