Patents by Inventor Michael Dabrowski

Michael Dabrowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220314188
    Abstract: The present invention provides an automated modular system and method for production of biopolymers including DNA and RNA. The system and method automates the complete production process for biopolymers. Modular equipment is provided for performing production steps with the individual modules arrange in a linear array. Each module includes a control system and can be rack mounted. One side of the array of modules provides connections for power, gas, vacuum and reagents and is accessible to technicians. On the other side of the array of modules a robotic transport system is provided for transporting materials between module interfaces. The elimination of the requirement for human intervention at multiple steps in the production process significantly decreases the costs of biopolymer production and reduces unnecessary complexity and sources of quality variation.
    Type: Application
    Filed: June 24, 2022
    Publication date: October 6, 2022
    Inventors: Paul Dabrowski, Michael Dabrowski, Fabian Gerlinghaus, Alex Pesch
  • Patent number: 11439971
    Abstract: The present invention provides an automated modular system and method for production of biopolymers including DNA and RNA. The system and method automates the complete production process for biopolymers. Modular equipment is provided for performing production steps with the individual modules arrange in a linear array. Each module includes a control system and can be rack mounted. One side of the array of modules provides connections for power, gas, vacuum and reagents and is accessible to technicians. On the other side of the array of modules a robotic transport system is provided for transporting materials between module interfaces. The elimination of the requirement for human intervention at multiple steps in the production process significantly decreases the costs of biopolymer production and reduces unnecessary complexity and sources of quality variation.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: September 13, 2022
    Assignee: Synthego Corporation
    Inventors: Paul Dabrowski, Michael Dabrowski, Fabian Gerlinghaus, Alex Pesch
  • Publication number: 20200406221
    Abstract: The present invention provides an automated modular system and method for production of biopolymers including DNA and RNA. The system and method automates the complete production process for biopolymers. Modular equipment is provided for performing production steps with the individual modules arrange in a linear array. Each module includes a control system and can be rack mounted. One side of the array of modules provides connections for power, gas, vacuum and reagents and is accessible to technicians. On the other side of the array of modules a robotic transport system is provided for transporting materials between module interfaces. The elimination of the requirement for human intervention at multiple steps in the production process significantly decreases the costs of biopolymer production and reduces unnecessary complexity and sources of quality variation.
    Type: Application
    Filed: September 15, 2020
    Publication date: December 31, 2020
    Inventors: Paul Dabrowski, Michael Dabrowski, Fabian Gerlinghaus, Alex Pesch
  • Patent number: 10814300
    Abstract: The present invention provides an automated modular system and method for production of biopolymers including DNA and RNA. The system and method automates the complete production process for biopolymers. Modular equipment is provided for performing production steps with the individual modules arrange in a linear array. Each module includes a control system and can be rack mounted. One side of the array of modules provides connections for power, gas, vacuum and reagents and is accessible to technicians. On the other side of the array of modules a robotic transport system is provided for transporting materials between module interfaces. The elimination of the requirement for human intervention at multiple steps in the production process significantly decreases the costs of biopolymer production and reduces unnecessary complexity and sources of quality variation.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: October 27, 2020
    Assignee: Synthego Corporation
    Inventors: Paul Dabrowski, Michael Dabrowski, Fabian Gerlinghaus, Alex Pesch
  • Publication number: 20200147578
    Abstract: The present invention provides an automated modular system and method for production of biopolymers including DNA and RNA. The system and method automates the complete production process for biopolymers. Modular equipment is provided for performing production steps with the individual modules arrange in a linear array. Each module includes a control system and can be rack mounted. One side of the array of modules provides connections for power, gas, vacuum and reagents and is accessible to technicians. On the other side of the array of modules a robotic transport system is provided for transporting materials between module interfaces. The elimination of the requirement for human intervention at multiple steps in the production process significantly decreases the costs of biopolymer production and reduces unnecessary complexity and sources of quality variation.
    Type: Application
    Filed: January 17, 2020
    Publication date: May 14, 2020
    Inventors: Paul Dabrowski, Michael Dabrowski, Fabian Gerlinghaus, Alex Pesch
  • Patent number: 10569249
    Abstract: The present invention provides an automated modular system and method for production of biopolymers including DNA and RNA. The system and method automates the complete production process for biopolymers. Modular equipment is provided for performing production steps with the individual modules arrange in a linear array. Each module includes a control system and can be rack mounted. One side of the array of modules provides connections for power, gas, vacuum and reagents and is accessible to technicians. On the other side of the array of modules a robotic transport system is provided for transporting materials between module interfaces. The elimination of the requirement for human intervention at multiple steps in the production process significantly decreases the costs of biopolymer production and reduces unnecessary complexity and sources of quality variation.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: February 25, 2020
    Assignee: Synthego Corporation
    Inventors: Paul Dabrowski, Michael Dabrowski, Fabian Gerlinghaus, Alex Pesch
  • Publication number: 20180311637
    Abstract: The present invention provides an automated modular system and method for production of biopolymers including DNA and RNA. The system and method automates the complete production process for biopolymers. Modular equipment is provided for performing production steps with the individual modules arrange in a linear array. Each module includes a control system and can be rack mounted. One side of the array of modules provides connections for power, gas, vacuum and reagents and is accessible to technicians. On the other side of the array of modules a robotic transport system is provided for transporting materials between module interfaces. The elimination of the requirement for human intervention at multiple steps in the production process significantly decreases the costs of biopolymer production and reduces unnecessary complexity and sources of quality variation.
    Type: Application
    Filed: July 5, 2018
    Publication date: November 1, 2018
    Inventors: Paul Dabrowski, Michael Dabrowski, Fabian Gerlinghaus, Alex Pesch
  • Patent number: 10040048
    Abstract: The present invention provides an automated modular system and method for production of biopolymers including DNA and RNA. The system and method automates the complete production process for biopolymers. Modular equipment is provided for performing production steps with the individual modules arrange in a linear array. Each module includes a control system and can be rack mounted. One side of the array of modules provides connections for power, gas, vacuum and reagents and is accessible to technicians. On the other side of the array of modules a robotic transport system is provided for transporting materials between module interfaces. The elimination of the requirement for human intervention at multiple steps in the production process significantly decreases the costs of biopolymer production and reduces unnecessary complexity and sources of quality variation.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: August 7, 2018
    Assignee: SYNTHEGO CORPORATION
    Inventors: Paul Dabrowski, Michael Dabrowski, Fabian Gerlinghaus, Alex Pesch
  • Patent number: 7333994
    Abstract: A system and related techniques and data structures present a Web based or other client application or service with a relational node structure to access, store and manipulate XML-based or XML-compliant data. Unlike unmodified XML information for instance stored in document object model (DOM) format, the inventive platform may load a relational node structure encapsulating XML-compliant information in an organized structure having pointers to next peer, parent, child and other links to related or unrelated information. Searching, querying and other operations may therefore be made more efficient since an entire tree structure need not be exhaustively traversed to locate desired data, but instead sorted via those relational linkages. Client applications such as Web browsing, email, contacts managers, calendars and others may therefore operate on XML or XML-compliant data without the loading or performance disadvantages which conventional XML platforms may incur.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: February 19, 2008
    Assignee: Microsoft Corporation
    Inventors: Andrew Glover, Samuel Clement, Michael Dabrowski
  • Publication number: 20050138003
    Abstract: A system and related techniques and data structures present a Web based or other client application or service with a relational node structure to access, store and manipulate XML-based or XML-compliant data. Unlike unmodified XML information for instance stored in document object model (DOM) format, the inventive platform may load a relational node structure encapsulating XML-compliant information in an organized structure having pointers to next peer, parent, child and other links to related or unrelated information. Searching, querying and other operations may therefore be made more efficient since an entire tree structure need not be exhaustively traversed to locate desired data, but instead sorted via those relational linkages. Client applications such as Web browsing, email, contacts managers, calendars and others may therefore operate on XML or XML-compliant data without the loading or performance disadvantages which conventional XML platforms may incur.
    Type: Application
    Filed: December 18, 2003
    Publication date: June 23, 2005
    Inventors: Andrew Glover, Samuel Clement, Michael Dabrowski