Patents by Inventor Michael De Jong

Michael De Jong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10782474
    Abstract: Detachable optical connectors including a connector support for optical chips and methods of their fabrication are disclosed. In one embodiment, an optical assembly includes an optical chip including a surface, an edge extending from the surface, and at least one chip waveguide proximate the surface and terminating at the edge. The optical assembly further includes a waveguide support having a chip coupling surface, and at least one waveguide disposed within the waveguide support and terminating at the chip coupling surface, wherein the chip coupling surface is coupled to the edge of the optical chip such that the at least one waveguide within the waveguide support is optically coupled to the at least one chip waveguide of the optical chip. The optical assembly further includes a connector support having a first portion coupled to the optical chip, and a second portion coupled to the waveguide support.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: September 22, 2020
    Assignee: Corning Research & Development Corporation
    Inventors: Lars Martin Otfried Brusberg, Douglas Llewellyn Butler, Michael de Jong, Alan Frank Evans, Andreas Matiss, James Scott Sutherland
  • Publication number: 20200174203
    Abstract: A fiber optic connector that includes a connector body comprising a ferrule retaining portion, a pusher engagement portion and a body cable passage extending through the pusher engagement portion and the ferrule retaining portion. The connector includes a ferrule assembly structurally configured to be retained by the ferrule retaining portion with an optical fiber bore of the ferrule assembly in alignment with the body cable passage. The connector includes a pusher structurally configured to axially engage the pusher engagement portion with a pusher cable passage in alignment with the body cable passage, and a collapsing cantilevered gasket structurally configured to form an axially compressed sealing interface between the connector body and the pusher and an omnidirectionally compressed sealing interface between the gasket and a cable passing through a cable passage of the gasket.
    Type: Application
    Filed: February 4, 2020
    Publication date: June 4, 2020
    Inventors: Michael De Jong, Wolf Peter Kluwe, Andrey Nikolayevich Levandovskiy, Daniel Leyva, JR.
  • Publication number: 20200150374
    Abstract: Hardened fiber optic connectors having a splice connector assembly are disclosed. The splice connector assembly is attached to an optical fiber of a fiber optic cable by way of a stub optical fiber, thereby connectorizing the hardened connector. In one embodiment, the hardened connector includes an inner housing having a first shell and a second shell for securing a tensile element of the cable and securing the splice connector assembly. Further assembly of the hardened connector has a portion of the inner housing fitting into a shroud of the hardened connector. The first shell comprises first and second alignment fingers that allow the mating the hardened connector with a complimentary device. The first shell can have any suitable alignment portion for mating with a complementary device. The hardened connector may also include features for fiber buckling, sealing, cable strain relief or a pre-assembly of components for ease of installation.
    Type: Application
    Filed: November 13, 2018
    Publication date: May 14, 2020
    Inventors: Michael de Jong, Daniel Leyva, JR.
  • Publication number: 20200049177
    Abstract: The invention relates to a clip for fastening a first element to a second element, in particular for the assembly of components for vehicles. The clip has a head with two wings extending from each other in the direction perpendicular to the longitudinal axis of the clip and a tip. The clip also has a first side and a second side, wherein the first side and the second side extend from the head towards the tip in the direction of the longitudinal axis of the clip, and the first and the second side are interconnected through the tip and can be compressed such that they can be moved towards each other around the tip. At least one side has a section that is farther away from the longitudinal axis than another section, wherein at least one wing at the wing end has a supporting surface that extends at least in sections at an angle of less than 45 degrees to the longitudinal axis of the clip.
    Type: Application
    Filed: October 10, 2017
    Publication date: February 13, 2020
    Inventors: Thomas PODSADNY, Michael DE JONG, Kevin MASCHAT
  • Patent number: 10527806
    Abstract: The glass-based ferrules include a glass substrate and two spaced-apart guide tubes, which can also be made of glass. The guide tubes include bores sized to receive guide pins from another ferrule. The ferrule can be used to form an optical interconnection device in the form of a waveguide connector that includes a planar lightwave circuit that supports multiple waveguides. The ferrule can also be used to form an optical interconnection device in the form of a fiber connector that includes a support substrate and an array of optical fibers supported thereby. The waveguide connector and fiber connector when mated form an integrated photonic device. Methods of forming the ferrule components, the ferrules and the optical interconnection devices are also disclosed.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: January 7, 2020
    Assignee: Corning Research & Development Corporation
    Inventors: Douglas Llewellyn Butler, Michael de Jong, Alan Frank Evans, Robin May Force, James Scott Sutherland
  • Patent number: 10481335
    Abstract: Dense shuttered fiber optic connectors and assemblies suitable for establishing optical connections for optical backplanes in equipment racks are disclosed. In one embodiment, a fiber optic connector assembly is provided. The fiber optic connector assembly comprises a fiber optic connector. The fiber optic connector assembly also comprises a slideable shutter disposed in the fiber optic connector. The slideable shutter has an opening(s) configured to be aligned with a plurality of lenses disposed in the fiber optic connector in an open position, and configured to block access to the plurality of lenses disposed in the fiber optic connector in a closed position. The fiber optic connector assembly also comprises an actuation member coupled to the slideable shutter configured to move the slideable shutter from the closed position to the open position.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: November 19, 2019
    Assignee: Corning Optical Communications, LLC
    Inventors: Micah Colen Isenhour, Michael de Jong, Dennis Michael Knecht, James Phillip Luther
  • Publication number: 20190331148
    Abstract: Disclosed is a fastener for securing a retaining element on a support, wherein the fastener is formed like a retaining clip and has at least one leg and at least one engaging section, wherein the engaging section extends outwardly from the longitudinal axis of the fastener and is designed to engage with the retaining element. The leg has at least one latching section for retaining the retaining element on the support at an opening of the support, wherein the fastener has a channel for a section of the retaining element, wherein the fastener has at least one contact region for the retaining element that is positioned at least partially within the channel, and the contact region is functionally connected to the engaging section via a connecting section, wherein the contact region has an angle greater than 0° and less than 90° to the longitudinal axis of the channel.
    Type: Application
    Filed: October 18, 2017
    Publication date: October 31, 2019
    Inventor: Michael DE JONG
  • Publication number: 20190302376
    Abstract: The glass-based ferrules include a glass substrate and two spaced-apart guide tubes, which can also be made of glass. The guide tubes include bores sized to receive guide pins from another ferrule. The ferrule can be used to form an optical interconnection device in the form of a waveguide connector that includes a planar lightwave circuit that supports multiple waveguides. The ferrule can also be used to form an optical interconnection device in the form of a fiber connector that includes a support substrate and an array of optical fibers supported thereby. The waveguide connector and fiber connector when mated form an integrated photonic device. Methods of forming the ferrule components, the ferrules and the optical interconnection devices are also disclosed.
    Type: Application
    Filed: June 4, 2019
    Publication date: October 3, 2019
    Inventors: Douglas Llewellyn Butler, Michael de Jong, Alan Frank Evans, Robin May Force, James Scott Sutherland
  • Patent number: 10345535
    Abstract: The glass-based ferrules include a glass substrate and two spaced-apart guide tubes, which can also be made of glass. The guide tubes include bores sized to receive guide pins from another ferrule. The ferrule can be used to form an optical interconnection device in the form of a waveguide connector that includes a planar lightwave circuit that supports multiple waveguides. The ferrule can also be used to form an optical interconnection device in the form of a fiber connector that includes a support substrate and an array of optical fibers supported thereby. The waveguide connector and fiber connector when mated form an integrated photonic device. Methods of forming the ferrule components, the ferrules and the optical interconnection devices are also disclosed.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: July 9, 2019
    Assignee: Corning Research & Development Corporation
    Inventors: Douglas Llewellyn Butler, Michael de Jong, Alan Frank Evans, Robin May Force, James Scott Sutherland
  • Publication number: 20190113690
    Abstract: Hardened fiber optic connectors having a mechanical splice assembly are disclosed. The mechanical splice assembly is attached to a first end of an optical waveguide such as an optical fiber of a fiber optic cable by way of a stub optical fiber, thereby connectorizing the hardened connector. In one embodiment, the hardened connector includes an inner housing having two shells for securing a tensile element of the cable and securing the mechanical splice assembly so that a ferrule assembly may translate. Further assembly of the hardened connector has the inner housing fitting into a shroud of the hardened connector. The shroud aides in mating the hardened connector with a complimentary device and the shroud may have any suitable configuration. The hardened connector may also include features for fiber buckling, sealing, cable strain relief or a pre-assembly for ease of installation.
    Type: Application
    Filed: December 6, 2018
    Publication date: April 18, 2019
    Inventors: Michael de Jong, Wolf Peter Kluwe, Daniel Leyva, JR., Min Tao
  • Publication number: 20190094460
    Abstract: Detachable optical connectors including a connector support for optical chips and methods of their fabrication are disclosed. In one embodiment, an optical assembly includes an optical chip including a surface, an edge extending from the surface, and at least one chip waveguide proximate the surface and terminating at the edge. The optical assembly further includes a waveguide support having a chip coupling surface, and at least one waveguide disposed within the waveguide support and terminating at the chip coupling surface, wherein the chip coupling surface is coupled to the edge of the optical chip such that the at least one waveguide within the waveguide support is optically coupled to the at least one chip waveguide of the optical chip. The optical assembly further includes a connector support having a first portion coupled to the optical chip, and a second portion coupled to the waveguide support.
    Type: Application
    Filed: November 21, 2018
    Publication date: March 28, 2019
    Inventors: Lars Martin Otfried Brusberg, Douglas Llewellyn Butler, Michael de Jong, Alan Frank Evans, Andreas Matiss, James Scott Sutherland
  • Patent number: 10209456
    Abstract: A cap apparatus is mounted to a fiber optic connector having a ferrule supporting optical fiber(s). A sealing apparatus is cooperatively configured with the cap apparatus for protecting an end face of the ferrule. The cap apparatus includes a body having opposite ends between which a cavity extends. The opposite ends of the body respectively define first and second openings to the cavity. A portion of the fiber optic connector extends through the first opening and into the cavity. The cap apparatus includes a cover mounted to the body and at least partially obstructing the second opening, wherein the end face of the ferrule is positioned within the cavity at a location spaced from the cover. The sealing apparatus is positioned between at least a portion of the cover and the end face of the ferrule.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: February 19, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Adam Kent Collier, Michael de Jong, David Ralph Maack, Jerald Lee Overcash
  • Patent number: 10151887
    Abstract: Hardened fiber optic connectors having a mechanical splice assembly are disclosed. The mechanical splice assembly is attached to a first end of an optical waveguide such as an optical fiber of a fiber optic cable by way of a stub optical fiber, thereby connectorizing the hardened connector. In one embodiment, the hardened connector includes an inner housing having two shells for securing a tensile element of the cable and securing the mechanical splice assembly so that a ferrule assembly may translate. Further assembly of the hardened connector has the inner housing fitting into a shroud of the hardened connector. The shroud aides in mating the hardened connector with a complimentary device and the shroud may have any suitable configuration. The hardened connector may also include features for fiber buckling, sealing, cable strain relief or a pre-assembly for ease of installation.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: December 11, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Michael de Jong, Wolf Peter Kluwe, Daniel Leyva, Jr., Min Tao
  • Patent number: 10146014
    Abstract: Fiber optic assemblies and related fabrication methods include a retaining member having at least one pin section that is configured to extend through an opening defined in at least one side wall of a body structure, to permit the at least one pin section to cooperate with at least one feature of a fiber optic connector received in a cavity of the body structure to thereby retain the fiber optic connector in the cavity. Exemplary body structures include dust caps, adapters, patch panels, fiber optic modules, and the like.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: December 4, 2018
    Assignee: Corning Optical Communications LLC
    Inventor: Michael de Jong
  • Patent number: 10133010
    Abstract: A cap apparatus is mounted to a fiber optic connector having a ferrule supporting optical fiber(s). A sealing apparatus is cooperatively configured with the cap apparatus for protecting an end face of the ferrule. The cap apparatus includes a body having opposite ends between which a cavity extends. The opposite ends of the body respectively define first and second openings to the cavity. A portion of the fiber optic connector extends through the first opening and into the cavity. The cap apparatus includes a cover mounted to the body and at least partially obstructing the second opening, wherein the end face of the ferrule is positioned within the cavity at a location spaced from the cover. The sealing apparatus is positioned between at least a portion of the cover and the end face of the ferrule.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: November 20, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Adam Kent Collier, Michael de Jong, David Ralph Maack, Jerald Lee Overcash
  • Patent number: 10114177
    Abstract: Translating lens holder assemblies employing bore relief zones, as well as optical connectors employing such lens holder assemblies, are disclosed. In one embodiment, a lens holder assembly includes a lens holder body having a mating face, a first forward slide portion and a first rear slide portion disposed on a first side of the lens holder body, and a second forward slide portion and a second rear slide portion disposed on a second side of the lens holder body. The first forward slide portion is separated from the first rear slide portion by a first bore relief zone, and the second forward slide portion is separated from the second rear slide portion by a second bore relief zone. In one embodiment, the lens holder assembly further includes at least one groove alignment feature disposed in the lens holder body that is configured to support at least one GRIN lens.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: October 30, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Michael de Jong, Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther
  • Publication number: 20180267255
    Abstract: The glass-based ferrules include a glass substrate and two spaced-apart guide tubes, which can also be made of glass. The guide tubes include bores sized to receive guide pins from another ferrule. The ferrule can be used to form an optical interconnection device in the form of a waveguide connector that includes a planar lightwave circuit that supports multiple waveguides. The ferrule can also be used to form an optical interconnection device in the form of a fiber connector that includes a support substrate and an array of optical fibers supported thereby. The waveguide connector and fiber connector when mated form an integrated photonic device. Methods of forming the ferrule components, the ferrules and the optical interconnection devices are also disclosed.
    Type: Application
    Filed: March 13, 2018
    Publication date: September 20, 2018
    Inventors: Douglas Llewellyn Butler, Michael de Jong, Allan Frank Evans, Robin May Force, James Scott Sutherland
  • Publication number: 20180210154
    Abstract: Fiber optic assemblies and related fabrication methods include a retaining member having at least one pin section that is configured to extend through an opening defined in at least one side wall of a body structure, to permit the at least one pin section to cooperate with at least one feature of a fiber optic connector received in a cavity of the body structure to thereby retain the fiber optic connector in the cavity. Exemplary body structures include dust caps, adapters, patch panels, fiber optic modules, and the like.
    Type: Application
    Filed: February 13, 2017
    Publication date: July 26, 2018
    Inventor: Michael de Jong
  • Patent number: 10012806
    Abstract: The application provides methods of forming a fiber coupling device comprising a substrate, the substrate having a substrate surface and at least one optoelectronic and/or photonic element, and further comprising at least one fiber coupling alignment structure that is optically transmissive. One method comprises a) applying a polymerizable material to the substrate surface, b) selectively polymerizing, using a method of 3D lithography, a region of the polymerizable material so as to convert the region of the polymerizable material into a polymer material, thereby forming at least one fiber coupling alignment structure, and c) cleaning the substrate and the polymer material from remaining non-polymerized polymerizable material, thereby exposing the at least one fiber coupling alignment structure of the fiber coupling device.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: July 3, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Michael de Jong, Davide Domenico Fortusini, Andreas Matiss, Martin Spreemann, Eric Stephan ten Have
  • Patent number: D823255
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: July 17, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Michael De Jong, Lea Sandra Kobeli, Edward Wilson Licitra, Dayne Wilcox