Patents by Inventor Michael Douglas Arnett

Michael Douglas Arnett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11739398
    Abstract: A composition includes, by weight percent: Cobalt (Co) between about 4.5 and about 7.0; Chromium (Cr) between about 10.2 and about 11.5; Molybdenum (Mo) between about 0.5 and about 2.5; Tungsten (W) between about 4.0 and about 5.5; Rhenium (Re) between about 0 and about 1.2; Aluminum (Al) between about 6.2 and about 6.8; Tantalum (Ta) between about 4.5 and about 6.0; Titanium (Ti) between about 0 and about 0.5; Hafnium (Hf) between about 0 and about 0.5; Carbon (C) between about 0 and about 0.2; Boron (B) between about 0 and about 0.02; and the balance Nickel (Ni), and other incidental impurities.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: August 29, 2023
    Assignee: General Electric Company
    Inventors: Akane Suzuki, Chen Shen, Arthur Samuel Peck, Shenyan Huang, Michael Douglas Arnett, Jon Conrad Schaeffer, Pazhayannur Ramanathan Subramanian
  • Patent number: 11725260
    Abstract: Compositions, and articles and methods for forming articles which include said compositions, are disclosed. The compositions include, by weight percent, about 13.7% to about 14.3% chromium (Cr), about 9.0% to about 9.9% cobalt (Co), about 4.0% to about 5.25% aluminum (Al), about 0.5% to about 3.0% titanium (Ti), about 4.5% to about 5.0% tungsten (W), about 1.4% to about 1.7% molybdenum (Mo), about 3.25% to about 3.75% niobium (Nb), about 0.08% to about 0.12% carbon (C), about 0.005% to about 0.04% zirconium (Zr), about 0.010% to about 0.014% boron (B), and balance nickel (Ni) and incidental impurities.
    Type: Grant
    Filed: April 8, 2022
    Date of Patent: August 15, 2023
    Assignee: General Electric Company
    Inventors: Yan Cui, Jon Conrad Schaeffer, Michael Douglas Arnett, Matthew Joseph Laylock, Brian Lee Tollison
  • Patent number: 11559847
    Abstract: A method for repairing a part and the resulting is disclosed. The method includes positioning a plug having an inner braze element coupled thereto into a cavity defined by an internal surface of a component. The cavity has a circular cross-section at the external surface of the component. The plug completely fills the circular cross-section and the inner braze element is within the cavity. A braze paste is positioned at least partially around the plug at the external surface. The component is positioned such that the inner braze element is above the plug. The component is subjected to a thermal cycle to melt the inner braze element around the plug, completely sealing the cavity by forming a metallurgical bond with the plug and the internal surface of the component. During the thermal cycle the braze paste is melted to form a metallurgical bond with the plug and external surface.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: January 24, 2023
    Assignee: General Electric Company
    Inventors: Yan Cui, Michael Douglas Arnett, Matthew Joseph Laylock, Brian Lee Tollison, Jeffrey Michael Breznak
  • Patent number: 11426822
    Abstract: A composition includes the constituents, in approximate weight percentages: Chromium 15-17; Silicon 2.5-3.5; Cobalt 6.0-8.0; Aluminum 1.0-2.0; Tantalum 1.5-2.5; Boron 1.5-2.5; Yttrium 0.015-0.025; Nickel balance; and incidental impurities.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: August 30, 2022
    Assignee: General Electric Company
    Inventors: Yan Cui, Michael Douglas Arnett, Ethan Conrad Schaeffer, Brian Lee Tollison, Matthew Joseph Laylock
  • Publication number: 20220251686
    Abstract: A composition includes, by weight percent: Cobalt (Co) between about 4.5 and about 7.0; Chromium (Cr) between about 10.2 and about 11.5; Molybdenum (Mo) between about 0.5 and about 2.5; Tungsten (W) between about 4.0 and about 5.5; Rhenium (Re) between about 0 and about 1.2; Aluminum (Al) between about 6.2 and about 6.8; Tantalum (Ta) between about 4.5 and about 6.0; Titanium (Ti) between about 0 and about 0.5; Hafnium (Hf) between about 0 and about 0.5; Carbon (C) between about 0 and about 0.2; Boron (B) between about 0 and about 0.02; and the balance Nickel (Ni), and other incidental impurities.
    Type: Application
    Filed: February 11, 2021
    Publication date: August 11, 2022
    Inventors: Akane Suzuki, Chen Shen, Arthur Samuel Peck, Shenyan Huang, Michael Douglas Arnett, Jon Conrad Schaeffer, Pazhayannur Ramanathan Subramanian
  • Patent number: 11384414
    Abstract: A nickel-based superalloy composition including by weight percent: Cobalt 7.5; Chromium 9.75; Aluminum 5.45; Titanium 1.0; Niobium 3.5; Tungsten 6.0; Molybdenum 1.5; Carbon 0.08; Hafnium 0.15; Boron 0.01; and Nickel 65.0; and incidental impurities.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: July 12, 2022
    Assignee: General Electric Company
    Inventors: Yan Cui, Jon Conrad Schaeffer, Michael Douglas Arnett, Matthew Joseph Laylock, Brian Lee Tollison
  • Patent number: 11377962
    Abstract: A closure element for an internal passage in a component, and a related method and turbine blade or nozzle are disclosed. The closure element includes a spherical body made of a first superalloy, and a plurality of extensions extending from a surface of the spherical body. The plurality of extensions made of the same, similar or different material other than the first superalloy. Subjecting the component to at least one thermal cycle causes a braze material to form a metallurgical bond with the spherical body, the plurality of extensions and the passage wall to seal the internal passage.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: July 5, 2022
    Assignee: General Electric Company
    Inventors: Yan Cui, Michael Douglas Arnett, Matthew Joseph Laylock, Brian Lee Tollison
  • Publication number: 20220176499
    Abstract: A composition includes the constituents, in approximate weight percentages: Chromium 15-17; Silicon 2.5-3.5; Cobalt 6.0-8.0; Aluminum 1.0-2.0; Tantalum 1.5-2.5; Boron 1.5-2.5; Yttrium 0.015-0.025; Nickel balance; and incidental impurities.
    Type: Application
    Filed: December 3, 2020
    Publication date: June 9, 2022
    Inventors: Yan Cui, Michael Douglas Arnett, Ethan Conrad Schaeffer, Brian Lee Tollison, Matthew Joseph Laylock
  • Patent number: 11242588
    Abstract: Embodiments of the disclosure provide a system including: an enclosure having an interior sized to enclose and the workpiece and form a vacuum and pressurized atmosphere within the interior. A plurality of thermal applicators may be in thermal communication with first and second portions of the interior. First and second thermal applicators may independently heat and cool the first and second portions of the interior. The first thermal applicator may apply a first thermal treatment to a first portion of the workpiece in the first portion of the interior. A second thermal applicator may apply a second thermal treatment to a second portion of the workpiece in the second portion of the interior independently of the first thermal treatment.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: February 8, 2022
    Assignee: General Electric Company
    Inventors: Michael Douglas Arnett, Jon Conrad Schaeffer, Christopher Raymond Hanslits
  • Patent number: 11199101
    Abstract: Embodiments of the disclosure provide a turbomachine component, including: a base portion configured for mounting on a rotor; an airfoil portion having a first end coupled to the base portion, and a second end opposite the first end. A creep resistance of the airfoil portion is greater than the base portion, and a fracture toughness of the airfoil portion is less than the base portion. A tip portion may be coupled to the second end of the airfoil portion. A creep resistance of the tip portion is less than the airfoil portion and greater than the base portion. A fracture toughness of the tip portion is less than the base portion and greater than the airfoil portion.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: December 14, 2021
    Assignee: General Electric Company
    Inventors: Michael Douglas Arnett, Jon Conrad Schaeffer, Arthur Samuel Peck
  • Patent number: 11098395
    Abstract: In a non-limiting example, an article having a body including a nickel-based superalloy is provided. The nickel-based superalloy has a microstructure that includes a gamma phase matrix and a gamma prime phase including a plurality of rafting-resistant gamma prime particles dispersed in the gamma phase matrix. The plurality of the rafting-resistant gamma prime particles has an average particle perimeter of about 3 microns to about 15 microns, an average aspect ratio of about 1.2 to about 3, and where the microstructure of the nickel-based superalloy is substantially uniform throughout the body.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: August 24, 2021
    Assignee: General Electric Company
    Inventors: Michael Douglas Arnett, Jon Conrad Schaeffer, Arthur Samuel Peck, Maxim Konter
  • Publication number: 20210246534
    Abstract: A nickel-based superalloy composition including by weight percent: Cobalt 7.5; Chromium 9.75; Aluminum 5.45; Titanium 1.0; Niobium 3.5; Tungsten 6.0; Molybdenum 1.5; Carbon 0.08; Hafnium 0.15; Boron 0.01; and Nickel 65.0; and incidental impurities.
    Type: Application
    Filed: February 7, 2020
    Publication date: August 12, 2021
    Inventors: Yan Cui, Jon Conrad Schaeffer, Michael Douglas Arnett, Matthew Joseph Laylock, Brian Lee Tollison
  • Publication number: 20210205910
    Abstract: A method for repairing a part and the resulting is disclosed. The method includes positioning a plug having an inner braze element coupled thereto into a cavity defined by an internal surface of a component. The cavity has a circular cross-section at the external surface of the component. The plug completely fills the circular cross-section and the inner braze element is within the cavity. A braze paste is positioned at least partially around the plug at the external surface. The component is positioned such that the inner braze element is above the plug. The component is subjected to a thermal cycle to melt the inner braze element around the plug, completely sealing the cavity by forming a metallurgical bond with the plug and the internal surface of the component. During the thermal cycle the braze paste is melted to form a metallurgical bond with the plug and external surface.
    Type: Application
    Filed: January 8, 2020
    Publication date: July 8, 2021
    Inventors: Yan Cui, Michael Douglas Arnett, Matthew Joseph Laylock, Brian Lee Tollison, Jeffrey Michael Breznak
  • Publication number: 20210189539
    Abstract: In a non-limiting example, an article having a body including a nickel-based superalloy is provided. The nickel-based superalloy has a microstructure that includes a gamma phase matrix and a gamma prime phase including a plurality of rafting-resistant gamma prime particles dispersed in the gamma phase matrix. The plurality of the rafting-resistant gamma prime particles has an average particle perimeter of about 3 microns to about 15 microns, an average aspect ratio of about 1.2 to about 3, and where the microstructure of the nickel-based superalloy is substantially uniform throughout the body.
    Type: Application
    Filed: December 18, 2019
    Publication date: June 24, 2021
    Inventors: Michael Douglas Arnett, Jon Conrad Schaeffer, Arthur Samuel Peck, Maxim Konter
  • Publication number: 20210180461
    Abstract: Embodiments of the disclosure provide a turbomachine component, including: a base portion configured for mounting on a rotor; an airfoil portion having a first end coupled to the base portion, and a second end opposite the first end. A creep resistance of the airfoil portion is greater than the base portion, and a fracture toughness of the airfoil portion is less than the base portion. A tip portion may be coupled to the second end of the airfoil portion. A creep resistance of the tip portion is less than the airfoil portion and greater than the base portion. A fracture toughness of the tip portion is less than the base portion and greater than the airfoil portion.
    Type: Application
    Filed: December 12, 2019
    Publication date: June 17, 2021
    Inventors: Michael Douglas Arnett, Jon Conrad Schaeffer, Arthur Samuel Peck
  • Publication number: 20210180169
    Abstract: Embodiments of the disclosure provide a system including: an enclosure having an interior sized to enclose and the workpiece and form a vacuum and pressurized atmosphere within the interior. A plurality of thermal applicators may be in thermal communication with first and second portions of the interior. First and second thermal applicators may independently heat and cool the first and second portions of the interior. The first thermal applicator may apply a first thermal treatment to a first portion of the workpiece in the first portion of the interior. A second thermal applicator may apply a second thermal treatment to a second portion of the workpiece in the second portion of the interior independently of the first thermal treatment.
    Type: Application
    Filed: December 12, 2019
    Publication date: June 17, 2021
    Inventors: Michael Douglas Arnett, Jon Conrad Schaeffer, Christopher Raymond Hanslits
  • Patent number: 11001913
    Abstract: A cast nickel-base superalloy that includes iron added substitutionally for nickel. The cast nickel-base superalloy comprises, in weight percent about 1-6% iron, about 7.5-19.1% cobalt, about 7-22.5% chromium, about 1.2-6.2% aluminum, optionally up to about 5% titanium, optionally up to about 6.5% tantalum, optionally up to about 1% Nb, about 2-6% W, optionally up to about 3% Re, optionally up to about 4% Mo, about 0.05-0.18% C, optionally up to about 0.15% Hf, about 0.004-0.015 B, optionally up to about 0.1% Zr, and the balance Ni and incidental impurities. The superalloy is characterized by a ?? solvus temperature that is within 5% of the ?? solvus temperature of the superalloy that does not include 1-6% Fe and a mole fraction of ?? that is within 15% of the mole fraction of the superalloy that does not include 1-6% Fe.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: May 11, 2021
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Ganjiang Feng, Jon Conrad Schaeffer, Michael Douglas Arnett
  • Publication number: 20210071533
    Abstract: A closure element for an internal passage in a component, and a related method and turbine blade or nozzle are disclosed. The closure element includes a spherical body made of a first superalloy, and a plurality of extensions extending from a surface of the spherical body. The plurality of extensions made of the same, similar or different material other than the first superalloy. Subjecting the component to at least one thermal cycle causes a braze material to form a metallurgical bond with the spherical body, the plurality of extensions and the passage wall to seal the internal passage.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 11, 2021
    Inventors: Yan Cui, Michael Douglas Arnett, Matthew Joseph Laylock, Brian Lee Tollison
  • Publication number: 20200149134
    Abstract: A composition of matter includes from about 16 to about 20 wt % chromium, greater than 6 to about 10 wt % aluminum, from about 2 to about 10 wt % iron, less than about 0.04 wt % yttrium, less than about 12 wt % cobalt, less than about 1.0 wt % manganese, less than about 1.0 wt % molybdenum, less than about 1.0 wt % silicon, less than about 0.25 wt % carbon, about 0.03 wt % boron, less than about 1.0 wt % tungsten, less than about 1.0 wt % tantalum, about 0.5 wt % titanium, about 0.5 wt % hafnium, about 0.5 wt % rhenium, about 0.4 wt % lanthanide elements, and the balance being nickel and incidental impurities. This nickel-based superalloy composition may be used in superalloy articles, such as a blade, nozzle, a shroud, a splash plate, a squealer tip of the blade, and a combustor of a gas turbine engine.
    Type: Application
    Filed: November 9, 2018
    Publication date: May 14, 2020
    Applicant: General Electric Company
    Inventors: Yan Cui, Michael Douglas Arnett, Matthew Joseph Laylock, Brian Lee Tollison, Brad Wilson VanTassel
  • Patent number: 10640849
    Abstract: A composition of matter includes from about 16 to about 20 wt % chromium, greater than 6 to about 10 wt % aluminum, from about 2 to about 10 wt % iron, less than about 0.04 wt % yttrium, less than about 12 wt % cobalt, less than about 1.0 wt % manganese, less than about 1.0 wt % molybdenum, less than about 1.0 wt % silicon, less than about 0.25 wt % carbon, about 0.03 wt % boron, less than about 1.0 wt % tungsten, less than about 1.0 wt % tantalum, about 0.5 wt % titanium, about 0.5 wt % hafnium, about 0.5 wt % rhenium, about 0.4 wt % lanthanide elements, and the balance being nickel and incidental impurities. This nickel-based superalloy composition may be used in superalloy articles, such as a blade, nozzle, a shroud, a splash plate, a squealer tip of the blade, and a combustor of a gas turbine engine.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: May 5, 2020
    Assignee: General Electric Company
    Inventors: Yan Cui, Michael Douglas Arnett, Matthew Joseph Laylock, Brian Lee Tollison, Brad Wilson VanTassel