Patents by Inventor Michael Edward Eriksen

Michael Edward Eriksen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190203610
    Abstract: A turbine system includes a foam generating assembly having an in situ foam generating device at least partially positioned within the fluid passageway of the turbine engine, such that the in situ foam generating device is configured to generate foam within the fluid passageway of the turbine engine.
    Type: Application
    Filed: January 2, 2018
    Publication date: July 4, 2019
    Inventors: Ambarish Jayant Kulkarni, Byron Andrew Pritchard, JR., Bernard Patrick Bewlay, Michael Edward Eriksen, Nicole Jessica Tibbetts
  • Publication number: 20190153890
    Abstract: A wash system for a gas turbine engine includes a foam generating device configured for receiving and aerating a flow of wash fluid to generate a flow of foamed wash fluid having particular foam characteristics. The flow of foamed wash fluid passes through a distribution manifold where it is selectively directed through a plurality of wash lines to desired portions of the gas turbine engine. The wash system further includes a controller configured for manipulating the foam characteristics of the flow of foamed wash fluid and using the distribution manifold to selectively direct the flow of foamed wash fluid to desired portions of the gas turbine engine for optimal cleaning and improved engine efficiency.
    Type: Application
    Filed: January 24, 2019
    Publication date: May 23, 2019
    Inventors: Michael Edward Eriksen, Keith Anthony Lauria, Ambarish Jayant Kulkarni, Byron Andrew Pritchard, JR., David Geoffrey Dauenhauer, Bernard Patrick Bewlay, Nicole Jessica Tibbetts
  • Publication number: 20190107005
    Abstract: A turbine engine cleaning system includes a foaming nozzle. The foaming nozzle includes a wall having a thickness between an outer surface of the wall and an inner surface of the wall. The outer surface of the wall is configured to contact a detergent in which the foaming nozzle is configured to be disposed. The inner surface of the wall surrounds an inner plenum of the foaming nozzle, and the inner plenum is configured to receive an aerating gas. The foaming nozzle also includes a first row of first through holes fluidly coupled to, and extending between, a first row of first through hole inlets at the inner surface of the wall and a first row of first through hole outlets at the outer surface of the wall.
    Type: Application
    Filed: October 6, 2017
    Publication date: April 11, 2019
    Inventors: Ambarish Jayant Kulkarni, Keith Anthony Lauria, Michael Edward Eriksen, Nicole Jessica Tibbetts, Bernard Patrick Bewlay, Byron Andrew Pritchard, JR., Shantanu M. Sane
  • Patent number: 10227891
    Abstract: A wash system for a gas turbine engine includes a foam generating device configured for receiving and aerating a flow of wash fluid to generate a flow of foamed wash fluid having particular foam characteristics. The flow of foamed wash fluid passes through a distribution manifold where it is selectively directed through a plurality of wash lines to desired portions of the gas turbine engine. The wash system further includes a controller configured for manipulating the foam characteristics of the flow of foamed wash fluid and using the distribution manifold to selectively direct the flow of foamed wash fluid to desired portions of the gas turbine engine for optimal cleaning and improved engine efficiency.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: March 12, 2019
    Assignee: General Electric Company
    Inventors: Michael Edward Eriksen, Keith Anthony Lauria, Ambarish Jayant Kulkarni, Byron Andrew Pritchard, Jr., David Geoffrey Dauenhauer, Bernard Patrick Bewlay, Nicole Jessica Tibbetts
  • Publication number: 20180298781
    Abstract: A turbine engine cleaning system includes a foam generator configured to generate foam, from a liquid detergent, to clean a turbine engine. The turbine engine cleaning system also includes an effluent capture and detergent regeneration sub-system having an inlet configured to receive an effluent from the turbine engine, processing components configured to process the effluent to regenerate a liquid detergent, and an outlet fluidly coupled with the foam generator to enable transport of the liquid detergent from the effluent capture and detergent regeneration sub-system to the foam generator.
    Type: Application
    Filed: April 18, 2017
    Publication date: October 18, 2018
    Inventors: Nicole Jessica Tibbetts, Rob Ray Anthony, Brian William Pfeiffer, Michael Edward Eriksen, Keith Anthony Lauria, Bernard Patrick Bewlay, Ambarish Jayant Kulkarni
  • Publication number: 20180283209
    Abstract: A wash system for a gas turbine engine includes a foam generating device configured for receiving and aerating a flow of wash fluid to generate a flow of foamed wash fluid having particular foam characteristics. The flow of foamed wash fluid passes through a distribution manifold where it is selectively directed through a plurality of wash lines to desired portions of the gas turbine engine. The wash system further includes a controller configured for manipulating the foam characteristics of the flow of foamed wash fluid and using the distribution manifold to selectively direct the flow of foamed wash fluid to desired portions of the gas turbine engine for optimal cleaning and improved engine efficiency.
    Type: Application
    Filed: March 29, 2017
    Publication date: October 4, 2018
    Inventors: Michael Edward Eriksen, Keith Anthony Lauria, Ambarish Jayant Kulkarni, Byron Andrew Pritchard, JR., David Geoffrey Dauenhauer, Bernard Patrick Bewlay, Nicole Jessica Tibbetts
  • Publication number: 20180258787
    Abstract: The present disclosure provides methods and systems of generating flows of detergent through a turbine engine to effectuate cleaning of components thereof. The methods include introducing a foamed, acid-including detergent with a pH range of between 2 and 7 into a gas flowpath of the turbine engine. The methods also include creating a pressure differential in an aft portion of the gas flowpath with respect to a forward portion of the gas flowpath to generate a flow of the detergent therethrough. The methods further include creating a pressure differential in a forward portion of the gas flowpath with respect to an aft portion of the gas flowpath to generate a counterflow of the detergent therethrough. The flow and counterflow of the detergent through the gas flowpath interact with components of the turbine engine having foreign material thereon to at least partially remove the foreign material therefrom.
    Type: Application
    Filed: March 7, 2017
    Publication date: September 13, 2018
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Nicole Jessica TIBBETTS, Bernard Patrick BEWLAY, Ambarish Jayant KULKARNI, Byron Andrew PRITCHARD, JR., Keith Anthony LAURIA, Michael Edward ERIKSEN
  • Publication number: 20180245477
    Abstract: A method for cleaning components of a gas turbine engine is presented. The method includes introducing a working fluid into a gas flow path or a cooling circuit defined by the one or more components of the gas turbine engine such that the working fluid impinges upon a surface of the one or more components of the gas turbine engine, wherein the working fluid includes a plurality of detergent droplets entrained in a flow of steam. A system for cleaning components of a gas turbine engine are also presented.
    Type: Application
    Filed: February 27, 2017
    Publication date: August 30, 2018
    Inventors: Ambarish Jayant Kulkarni, Bernard Patrick Bewlay, Byron Andrew Pritchard, JR., Nicole Jessica Tibbetts, Michael Edward Eriksen, Eric John Telfeyan
  • Patent number: 10005111
    Abstract: A system and method of cleaning a turbine engine are provided. The method may include inserting, directing and evacuating a cleaning agent. Inserting may include inserting the cleaning agent through a predefined access port into a cooling cavity defined by an internal wall of an assembled turbine component, while directing may include directing the cleaning agent against the internal wall to remove a foreign material therefrom. Evacuating may include evacuating the cleaning agent from the cooling cavity.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: June 26, 2018
    Assignee: General Electric Company
    Inventors: Michael Edward Eriksen, Matthew Bos, Nicole Jessica Tibbetts, Michael Scheper, Eric Zeltwanger
  • Publication number: 20180155060
    Abstract: One example aspect of the present disclosure is directed to a method for enhancing a maintenance operation routine. The method includes receiving, at one or more processors, engine history data. The method includes comparing, at the one or more processors, the received engine history data to expected engine history data. The method includes determining, at the one or more processors, an expected effectiveness of a plurality of maintenance operation types based on the comparison. The method includes selecting, at the one or more processors, one of the plurality of maintenance operation types based on the determinations. The method includes transmitting, at the one or more processors, a signal indicative of a notification of the selected maintenance operation type.
    Type: Application
    Filed: October 31, 2017
    Publication date: June 7, 2018
    Inventors: David Geoffrey Dauenhauer, Ronald Matthew DiMuro, Peter Andrew Flynn, Michael Edward Eriksen
  • Publication number: 20180149038
    Abstract: A wash system for a gas turbine engine includes a core turning assembly having a motor configured to be mechanically coupled to the gas turbine engine. The rotor of the core turning assembly is further configured to rotate one or more components of a compressor section or a turbine section of the gas turbine engine at a rotational speed greater than two (2) revolutions per minute and less than five hundred (500) revolutions per minute during washing operations of the gas turbine engine.
    Type: Application
    Filed: November 30, 2016
    Publication date: May 31, 2018
    Inventors: Michael Edward Eriksen, Ethan Patrick O'Connor
  • Publication number: 20180094538
    Abstract: The present disclosure provides methods and systems for in situ cleaning of hot gas flowpath components of a turbine engine that form portions of a hot gas flowpath extending through the turbine. The hot gas flowpath components may include a layer of accumulated contaminants on first portions thereof that form a respective portion of the hot gas flowpath. The first portions may include a thermal battier coating (TBC), and the layer of accumulated contaminants may overlie the TBC and at least partially infiltrate into the TBC. The accumulated contaminants may include CaO—MgO—Al2O3-SiO2 (CMAS) partial melt. The methods may include introducing an acid-including detergent into the hot gas flowpath of the turbine engine and onto the hot gas flowpath components to clean the accumulated contaminants from the first surfaces of the components.
    Type: Application
    Filed: September 23, 2016
    Publication date: April 5, 2018
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Nicole Jessica TIBBETTS, Bernard Patrick BEWLAY, Byron Andrew PRITCHARD, JR., Brian Michael ELLIS, Michael Edward ERIKSEN, Keith Anthony LAURIA
  • Patent number: 9932854
    Abstract: The present disclosure provides methods and systems for in situ cleaning of hot gas flowpath components of a turbine engine that form portions of a hot gas flowpath extending through the turbine. The hot gas flowpath components may include a layer of accumulated contaminants on first portions thereof that form a respective portion of the hot gas flowpath. The first portions may include a thermal battier coating (TBC), and the layer of accumulated contaminants may overlie the TBC and at least partially infiltrate into the TBC. The accumulated contaminants may include CaO—MgO—Al2O3-SiO2 (CMAS) partial melt. The methods may include introducing an acid-including detergent into the hot gas flowpath of the turbine engine and onto the hot gas flowpath components to clean the accumulated contaminants from the first surfaces of the components.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: April 3, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Nicole Jessica Tibbetts, Bernard Patrick Bewlay, Byron Andrew Pritchard, Brian Michael Ellis, Michael Edward Eriksen, Keith Anthony Lauria
  • Publication number: 20170268377
    Abstract: A system and method for cleaning an installed gas turbine engine is provided. The system may include a controller on an engine core, wherein the engine core defines a primary gas path and includes at least one airfoil extending into the primary gas path. The method may include initiating a cleaning program and directing a cleaning fluid toward the engine core in response to the initiation of the cleaning program. The method may further include initiating delivery of the cleaning fluid as a non-vaporized liquid within the primary gas path to the engine core.
    Type: Application
    Filed: March 16, 2016
    Publication date: September 21, 2017
    Inventors: Peter Andrew Flynn, Michael Edward Eriksen, Lloyd Eric Rawson
  • Publication number: 20170254217
    Abstract: The present disclosure is directed to a method for in-situ (e.g. on-wing) cleaning one or more components of a gas turbine engine. The method includes injecting a dry detergent into the gas turbine engine. Further, the dry detergent contains a plurality of detergent particles having varying particle sizes. More specifically, the plurality of detergent particles includes a first set of particles having a median particle diameter within a first micron range and a second set of particles having a median particle diameter within a second micron range. Further, a median of the second micron range is larger than a median of the first micron range. In addition, the method includes circulating the dry detergent through at least a portion of the gas turbine engine so as to clean the one or more components thereof.
    Type: Application
    Filed: March 1, 2016
    Publication date: September 7, 2017
    Inventors: Michael Edward Eriksen, Ambarish Jayant Kulkarni, Nicole Jessica Tibbetts
  • Publication number: 20170209904
    Abstract: A system and method of cleaning a turbine engine are provided. The method may include inserting, directing and evacuating a cleaning agent. Inserting may include inserting the cleaning agent through a predefined access port into a cooling cavity defined by an internal wall of an assembled turbine component, while directing may include directing the cleaning agent against the internal wall to remove a foreign material therefrom. Evacuating may include evacuating the cleaning agent from the cooling cavity.
    Type: Application
    Filed: January 25, 2016
    Publication date: July 27, 2017
    Inventors: Michael Edward Eriksen, Matthew Bos, Nicole Jessica Tibbetts, Michael Scheper, Eric Zeltwanger
  • Publication number: 20170191376
    Abstract: The present disclosure is directed to a method for in-situ cleaning one or more components of a gas turbine engine using an abrasive gel detergent. More specifically, the gel detergent includes a plurality of abrasive particles suspended in a gel composition. Further, the abrasive particles include organic material. Moreover, the gel composition is formed of a mixture of detergent particles dissolved in a gel reactant. Thus, the method includes injecting the gel detergent into at least a portion of the gas turbine engine at a predetermined pressure. In addition, the method includes allowing the gel detergent to flow across or within one or more of the components of the gas turbine engine so as to clean one or more of the components.
    Type: Application
    Filed: January 5, 2016
    Publication date: July 6, 2017
    Inventors: Michael Edward Eriksen, David E. Caldwell, Nicole Jessica Tibbetts, Ambarish Jayant Kulkarni, Byron Andrew Pritchard, JR.
  • Publication number: 20170167290
    Abstract: Embodiments in accordance with the present disclosure include a meta-stable detergent based foam generating device of a turbine cleaning system includes a manifold configured to receive a liquid detergent and an expansion gas, a gas supply source configured to store the expansion gas, and one or more aerators fluidly coupled with, and between, the gas supply source and the manifold. Each aerator of the one or more aerators comprises an orifice through which the expansion gas enters the manifold, and wherein the orifice of each aerator is sized to enable generation of a meta-stable detergent based foam having bubbles with bubble diameters within a range of 10 microns (3.9×10?4 inches) and 5 millimeters (0.2 inches), having a half-life within a range of 5 minutes and 180 minutes, or a combination thereof.
    Type: Application
    Filed: December 11, 2015
    Publication date: June 15, 2017
    Inventors: Ambarish Jayant Kulkarni, Bernard Patrick Bewlay, Byron Andrew Pritchard, JR., Nicole Jessica Tibbetts, Michael Edward Eriksen, Stephen Wilton
  • Publication number: 20140064938
    Abstract: A case apparatus for a gas turbine engine includes an annular case having an interior surface with annular recess formed therein; and an annular bumper disposed in the recess, the bumper comprising a frangible material and having a low-friction contact surface, wherein the bumper is configured to permit elastic radial deflection in response to applied forces below a predetermined threshold.
    Type: Application
    Filed: September 6, 2012
    Publication date: March 6, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Michael Edward Eriksen, Gerald Alexander Pauley, Daniel Thomas Scorse