Patents by Inventor Michael F. Nichols

Michael F. Nichols has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5254372
    Abstract: A method for plasma treatment of a predetermined portion of a substrate. The impedance of the coil and an established normal plasma is matched with the impedance of a power source, thereby maximizing the efficiency of the transfer of energy from the power source to the coil and producing a resonant plasma. The predetermined portion of the substrate is exposed to the resonant plasma for treatment. Additionally, a method for plasma treatment of a predetermined portion of the outside surface of a filament. The filament is trained through an inlet and exit of a plasma treatment chamber, through an inlet side tubular mask within the chamber, and through an exit side tubular mask within the chamber, each mask being adjustable within the chamber axially of the filament to expose a predetermined segment of the filament to plasma in the chamber while masking the remainder of the filament within the chamber from exposure to plasma.
    Type: Grant
    Filed: February 27, 1991
    Date of Patent: October 19, 1993
    Assignee: Nichols Technologies, Inc.
    Inventor: Michael F. Nichols
  • Patent number: 5137780
    Abstract: A process for applying an adherent electrically insulative moisture-resistant composite coating to a substrate. A thin, adherent, highly cross-linked, substantially liquid moisture-impervious primer coating is provided on the substrate by glow discharge polymerization of a low molecular weight hydrocarbon monomer in a low pressure chamber containing the substrate, the monomer being selected from among methane, ethane, propane, ethylene, and propylene. A second polymeric coating layer is provided over the primer coating by glow discharge polymerization of a second precursor comprising a hydrocarbon or substituted hydrocarbon. The precursor exhibits a hydrogen yield of not greater than about 0.75 hydrogen atoms per molecule under the glow discharge polymerization conditions under which the second layer is deposited, whereby the second polymeric coating layer is substantially resilient and strongly bonded to the primer coating and the second layer comprises a high concentration of surface and bulk free radicals.
    Type: Grant
    Filed: November 21, 1989
    Date of Patent: August 11, 1992
    Assignee: The Curators of the University of Missouri
    Inventors: Michael F. Nichols, Allen W. Hahn
  • Patent number: 5121706
    Abstract: A process for applying an adherent electrically insulative moisture-resistant composite coating to a substrate. A thin, adherent, highly cross-linked, substantially liquid moisture-impervious primer coating is provided on the substrate by glow discharge polymerization of a low molecular weight hydrocarbon monomer in a low pressure chamber containing the substrate, the monomer being selected from among methane, ethane, propane, ethylene, and propylene. A second polymeric coating layer is provided over the primer coating by glow discharge polymerization of a second precursor comprising a hydrocarbon or substituted hydrocarbon. The precurser exhibits a hydrogen yield of not greater than about 0.75 hydrogen atoms per molecule under the glow discharge polymerization conditions under which the second layer is deposited, whereby the second polymeric coating layer is substantially resilient and strongly bonded to the primer coating and the second layer comprises a high concentration of surface and bulk free radicals.
    Type: Grant
    Filed: September 21, 1990
    Date of Patent: June 16, 1992
    Assignee: The Curators of the University of Missouri
    Inventors: Michael F. Nichols, Allen W. Hahn
  • Patent number: 4921723
    Abstract: A process for applying an adherent electrically insulative moisture-resistant composite coating to a substrate. A thin, adherent, highly cross-linked, substantially liquid moisture-impervious primer coating is provided on the substrate by glow discharge polymerization of a low molecular weight hydrocarbon monomer in a low pressure chamber containing the substrate, the monomer being selected from among methane, ethane, propane, ethylene, and propylene. A second polymeric coating layer is provided over the primer coating by glow discharge polymerization of a second precursor comprising a hydrocarbon or substituted hydrocarbon. The precursor exhibits a hydrogen yield of not greater than about 0.75 hydrogen atoms per molecule under the glow discharge polymerization conditions under which the second layer is deposited, whereby the second polymeric coating layer is substantially resilient and strongly bonded to the primer coating and the second layer comprises a high concentration of surface and bulk free radicals.
    Type: Grant
    Filed: October 16, 1987
    Date of Patent: May 1, 1990
    Assignee: The Curators of the University of Missouri
    Inventors: Michael F. Nichols, Allen W. Hahn
  • Patent number: 4390405
    Abstract: An oxygen electrode adapted for use for polarographic, galvanometric or amperometric analyses, that is resistant to poisoning and effective for accurate, reproducible current and voltage measurements. The electrode comprises a conductive sensing member having a working surface which is comprised of a metal that catalyzes the cathodic reduction of oxygen and which is adapted to communicate with an oxygen-containing environment for carrying out such reduction. At the working surface is a layer of an oxide of the aforesaid metal. An insulating jacket covers all of the member except the working surface. There is a thin polymeric coating over said oxide layer and securely adhered to the working surface. The coating comprises a polymer produced by glow discharge polymerization of an aliphatic hydrocarbon and has such properties as to permit the reduction of oxygen at the electrode by electrons supplied at the working surface through the conductive member.A method for preparing the electrode is also disclosed.
    Type: Grant
    Filed: June 23, 1981
    Date of Patent: June 28, 1983
    Assignee: Curators of the University of Missouri
    Inventors: Allen W. Hahn, Michael F. Nichols, Ashok K. Sharma, Eckhard W. Hellmuth
  • Patent number: 4384927
    Abstract: A dry glass electrode for use in potentiometric analyses of aqueous media. The electrode comprises a metal conductor constituted of platinum, gold, or tantalum, a layer comprising an oxide of the metal having a thickness of between about 50 Angstrom units and about 2 microns on an outer surface of the metal conductor, and an ion-selective glass membrane over and in electrical contact with the oxide layer. The ion-selective glass has a coefficient of thermal expansion differing by less than about 25% from the coefficient of thermal expansion of the metal.A method for producing the electrode of the invention is also disclosed.
    Type: Grant
    Filed: October 19, 1981
    Date of Patent: May 24, 1983
    Assignee: The Curators of the University of Missouri
    Inventor: Michael F. Nichols
  • Patent number: 4312734
    Abstract: A dry glass electrode for use in potentiometric analyses of aqueous media. The electrode comprises a metal conductor constituted of platinum, gold, or tantalum, a layer comprising an oxide of the metal having a thickness of between about 50 Angstrom units and about 2 microns on an outer surface of the metal conductor, and an ion-selective glass membrane over and in electrical contact with the oxide layer. The ion-selective glass has a coefficient of thermal expansion differing by less than about 25% from the coefficient of thermal expansion of the metal.A method for producing the electrode of the invention is also disclosed.
    Type: Grant
    Filed: February 19, 1980
    Date of Patent: January 26, 1982
    Assignee: The Curators of the University of Missouri
    Inventor: Michael F. Nichols
  • Patent number: 4276144
    Abstract: An oxygen electrode adapted for use for polarographic, galvanometric or amperometric analyses, that is resistant to poisoning and effective for accurate,reproducible current and voltage measurements. The electrode comprises a conductor constituted of a metal which catalyzes the cathodic reduction of oxygen, an electrical lead electrically connected to the conductor, and an insulating jacket covering all of the conductor except a working surface thereof that is adapted to communicate with an oxygen-containing environment for the cathodic reduction of oxygen. The conductor has a layer of an oxide of the aforesaid metal at its working surface. There is a thin polymeric coating over said oxide layer and securely adhered to the working surface. The coating comprises a polymer produced by glow discharge polymerization of an aliphatic hydrocarbon and has such properties to permit the reduction of oxygen at the electrode by electrons supplied at the working surface through the lead and conductor.
    Type: Grant
    Filed: February 20, 1980
    Date of Patent: June 30, 1981
    Assignee: The Curators of the University of Missouri
    Inventors: Allen W. Hahn, Michael F. Nichols, Ashok K. Sharma, Eckhard W. Hellmuth