Patents by Inventor Michael G. Norris

Michael G. Norris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9534561
    Abstract: An external combustion engine is disclosed. The external combustion engine includes a working fluid and a burner element, at least one heater head defining a working space, at least one piston cylinder containing a piston, a cooler, a crankcase including a crankshaft for producing an engine output, a rocking beam, a piston rod connected to the piston, a rocking beam driven by the piston rod, and a connecting rod connected at a first end to the rocking beam and at a second end to a crankshaft to convert rotary motion of the rocking beam to rotary motion of the crankshaft. The external combustion engine also includes an airlock space separating the crankcase and the working space for maintaining a pressure differential between the crankcase housing and the working space housing and an airlock pressure regulator connected between the crankcase and one of the airlock space and working space.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: January 3, 2017
    Assignee: New Power Concepts LLC
    Inventors: Dean Kamen, Christopher C. Langenfeld, Prashant Bhat, Michael G. Norris
  • Publication number: 20160101227
    Abstract: Improvements in fluid volume measurement systems are disclosed for a pneumatically actuated diaphragm pump in general, and a peritoneal dialysis cycler using a pump cassette in particular. Pump fluid volume measurements are based on pressure measurements in a pump control chamber and a reference chamber in a two-chamber model, with different sections of the apparatus being modeled using a combination of adiabatic, isothermal and polytropic processes. Real time or instantaneous fluid flow measurements in a pump chamber of a diaphragm pump are also disclosed, in this case using a one-chamber ideal gas model and using a high speed processor to obtain and process pump control chamber pressures during fluid flow into or out of the pump chamber. Improved heater control circuitry is also disclosed, to provide added or redundant safety measures, or to reduce current leakage from a heater element during pulse width modulation control of the heater.
    Type: Application
    Filed: June 5, 2015
    Publication date: April 14, 2016
    Applicant: DEKA Products Limited Partnership
    Inventors: Michael G. Norris, Jacob W. Scarpaci, Robert J. Bryant, JR., Geoffrey P. Spencer, David J. Hibbard, James D. Dale, John M. Kerwin, Andrew S. Coll, David A. Beavers, David W. McGill, Simon C. Helmore, David B. Doherty, Edgar J. Bolton, Jinsun Yoo, Paul G. Girouard, Daniel S. Karol, Daniel B. Singer, Joseph P. Rushlow
  • Publication number: 20160101278
    Abstract: Improvements in fluid volume measurement systems are disclosed for a pneumatically actuated diaphragm pump in general, and a peritoneal dialysis cycler using a pump cassette in particular. Pump fluid volume measurements are based on pressure measurements in a pump control chamber and a reference chamber in a two-chamber model, with different sections of the apparatus being modeled using a combination of adiabatic, isothermal and polytropic processes. Real time or instantaneous fluid flow measurements in a pump chamber of a diaphragm pump are also disclosed, in this case using a one-chamber ideal gas model and using a high speed processor to obtain and process pump control chamber pressures during fluid flow into or out of the pump chamber. Improved heater control circuitry is also disclosed, to provide added or redundant safety measures, or to reduce current leakage from a heater element during pulse width modulation control of the heater.
    Type: Application
    Filed: June 5, 2015
    Publication date: April 14, 2016
    Applicant: DEKA Products Limited Partner
    Inventors: Michael G. Norris, Jacob W. Scarpaci, Robert J. Bryant, JR., Geoffrey P. Spencer, David J. Hibbard, James D. Dale, John M. Kerwin, Andrew S. Coll, David A. Beavers, David W. McGill, Simon C. Helmore, David B. Doherty, Edgar J. Bolton, Jinsun Yoo, Paul G. Girouard, Daniel S. Karol, Daniel B. Singer, Joseph P. Rushlow
  • Publication number: 20160030658
    Abstract: A system for detecting whether a vascular access has been interrupted in an arrangement in which two catheters or needles are present in a blood vessel, fistula or graft. A fluid line leading to a pump is connected via a first connector to a first indwelling catheter, and a fluid line leading from a pump is connected via a second connector to a second indwelling catheter. Each connector is equipped with an electrode in contact with the lumen of the connector, the electrodes electrically connected to an electronic circuit that measures the impedance or conductivity of fluid between the first connector and second connectors via a fluid path through the blood vessel, fistula or graft. An electronic controller receives the impedance or conductivity data and processes the data to determine whether a vascular access disconnection has occurred.
    Type: Application
    Filed: May 27, 2015
    Publication date: February 4, 2016
    Inventors: Dirk A. van der Merwe, Michael G. Norris, Michael A. Baker, Todd A. Ballantyne, Michael J. Wilt
  • Publication number: 20160025036
    Abstract: An improvement is provided to a pressurized close-cycle machine that has a cold-end pressure vessel and is of the type having a piston undergoing reciprocating linear motion within a cylinder containing a working fluid heated by conduction through a heater head by heat from an external thermal source. The improvement includes a heat exchanger for cooling the working fluid, where the heat exchanger is disposed within the cold-end pressure vessel. The heater head may be directly coupled to the cold-end pressure vessel by welding or other methods. A coolant tube is used to convey coolant through the heat exchanger.
    Type: Application
    Filed: October 5, 2015
    Publication date: January 28, 2016
    Inventors: Jonathan Strimling, Clement D. Bouchard, Thomas Q. Gurski, Christopher C. Lagenfeld, Michael G. Norris, Ryan K. LaRocque
  • Patent number: 9151243
    Abstract: An improvement is provided to a pressurized close-cycle machine that has a cold-end pressure vessel and is of the type having a piston undergoing reciprocating linear motion within a cylinder containing a working fluid heated by conduction through a heater head by heat from an external thermal source. The improvement includes a heat exchanger for cooling the working fluid, where the heat exchanger is disposed within the cold-end pressure vessel. The heater head may be directly coupled to the cold-end pressure vessel by welding or other methods. A coolant tube is used to convey coolant through the heat exchanger.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: October 6, 2015
    Assignee: New Power Concepts LLC
    Inventors: Jonathan Strimling, Clement D. Bouchard, Thomas Q. Gurski, Christopher C. Langenfeld, Michael G. Norris, Ryan K. LaRocque
  • Publication number: 20150047336
    Abstract: A Stirling cycle machine. The machine includes at least one rocking drive mechanism which includes: a rocking beam having a rocker pivot, at least one cylinder and at least one piston. The piston is housed within a respective cylinder and is capable of substantially linearly reciprocating within the respective cylinder. Also, the drive mechanism includes at least one coupling assembly having a proximal end and a distal end. The linear motion of the piston is converted to rotary motion of the rocking beam. Also, a crankcase housing the rocking beam and housing a first portion of the coupling assembly is included. The machine also includes a working space housing the at least one cylinder, the at least one piston and a second portion of the coupling assembly. An airlock is included between the workspace and the crankcase and a seal is included for sealing the workspace from the airlock and crankcase.
    Type: Application
    Filed: June 30, 2014
    Publication date: February 19, 2015
    Applicant: New Power Concepts LLC
    Inventors: Dean Kamen, Christopher C. Langenfeld, Prashant Bhat, Michael G. Norris, Stanley B. Smith, III, Christopher M. Werner
  • Publication number: 20140182282
    Abstract: A piston rod seal unit. The piston rod seal unit includes a housing, a cylinder gland, and at least one floating rod seal assembly mounted in the cylinder gland, the floating rod seal assembly comprising at least one rod seal mounted onto the floating rod seal assembly.
    Type: Application
    Filed: March 15, 2013
    Publication date: July 3, 2014
    Applicant: New Power Concepts LLC
    Inventors: Dean Kamen, Christopher C. Langenfeld, Prashant Bhat, Michael G. Norris
  • Patent number: 8763391
    Abstract: A Stirling cycle machine. The machine includes at least one rocking drive mechanism which includes: a rocking beam having a rocker pivot, at least one cylinder and at least one piston. The piston is housed within a respective cylinder and is capable of substantially linearly reciprocating within the respective cylinder. Also, the drive mechanism includes at least one coupling assembly having a proximal end and a distal end. The linear motion of the piston is converted to rotary motion of the rocking beam. Also, a crankcase housing the rocking beam and housing a first portion of the coupling assembly is included. The machine also includes a working space housing the at least one cylinder, the at least one piston and a second portion of the coupling assembly. An airlock is included between the workspace and the crankcase and a seal is included for sealing the workspace from the airlock and crankcase.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: July 1, 2014
    Assignee: DEKA Products Limited Partnership
    Inventors: Dean Kamen, Christopher C. Langenfeld, Prashant Bhat, Michael G. Norris, Stanley B. Smith, III, Christopher M. Werner
  • Publication number: 20140000235
    Abstract: An external combustion engine is disclosed. The external combustion engine containing a working fluid and including a burner element for heating the working fluid of the engine, at least one heater head defining a working space containing the working fluid, at least one piston cylinder containing a piston for compressing the working fluid, a cooler for cooling the working fluid, a crankcase. The crankcase includes a crankshaft for producing an engine output, a rocking beam rotating about a rocker pivot for driving the crankshaft, a piston rod connected to the piston, a rocking beam driven by the piston rod, and a connecting rod connected at a first end to the rocking beam and at a second end to a crankshaft to convert rotary motion of the rocking beam to rotary motion of the crankshaft.
    Type: Application
    Filed: April 16, 2012
    Publication date: January 2, 2014
    Applicant: DEKA Products Limited Partnership
    Inventors: Dean Kamen, Christopher C. Langenfeld, Prashant Bhat, Michael G. Norris
  • Patent number: 7934926
    Abstract: An ejector, such as a venturi, facilitates the delivery of gaseous fuel to the combustion chamber of a burner. A blower forces air through the ejector, and the air flow produces a suction that draws fuel from a fuel inlet to produce a fuel-air mixture. The amount of fuel drawn from the fuel inlet is a function of the air flow such that a substantially constant fuel-air ratio is obtained over a range of air flow rates and temperatures without the need for a separate high-pressure fuel pump. The fuel-air mixture may be provided to a combustion chamber for combustion. Air from the blower may be pre-heated prior to entering the ejector, for example, using a heat exchanger that recovers some of the heat from the combusted fuel-air mixture. Air flow through the ejector may be conditioned, for example, by a swirler, to produce a tangential air flow that can increase fuel flow by increasing air velocity across the fuel inlet and/or produce a swirl-stabilized flame in the combustion chamber.
    Type: Grant
    Filed: May 5, 2005
    Date of Patent: May 3, 2011
    Assignee: DEKA Products Limited Partnership
    Inventors: Kurt L. Kornbluth, Michael G. Norris
  • Publication number: 20110011078
    Abstract: A Stirling cycle machine. The machine includes at least one rocking drive mechanism which includes: a rocking beam having a rocker pivot, at least one cylinder and at least one piston. The piston is housed within a respective cylinder and is capable of substantially linearly reciprocating within the respective cylinder. Also, the drive mechanism includes at least one coupling assembly having a proximal end and a distal end. The linear motion of the piston is converted to rotary motion of the rocking beam. Also, a crankcase housing the rocking beam and housing a first portion of the coupling assembly is included. The machine also includes a working space housing the at least one cylinder, the at least one piston and a second portion of the coupling assembly. An airlock is included between the workspace and the crankcase and a seal is included for sealing the workspace from the airlock and crankcase.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 20, 2011
    Applicant: New Power Concepts LLC
    Inventors: Dean Kamen, Christopher C. Langenfeld, Prashant Bhat, Michael G. Norris, Stanley B. Smith, III, Christopher M. Werner, David J. Peretz, Brian H. Yoo, Felix Winkler
  • Publication number: 20110011079
    Abstract: A Stirling cycle machine. The machine includes at least one rocking drive mechanism which includes: a rocking beam having a rocker pivot, at least one cylinder and at least one piston. The piston is housed within a respective cylinder and is capable of substantially linearly reciprocating within the respective cylinder. Also, the drive mechanism includes at least one coupling assembly having a proximal end and a distal end. The linear motion of the piston is converted to rotary motion of the rocking beam. Also, a crankcase housing the rocking beam and housing a first portion of the coupling assembly is included. The machine also includes a working space housing the at least one cylinder, the at least one piston and a second portion of the coupling assembly. An airlock is included between the workspace and the crankcase and a seal is included for sealing the workspace from the airlock and crankcase.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 20, 2011
    Applicant: New Power Concepts LLC
    Inventors: Dean Kamen, Christopher C. Langenfeld, Prashant Bhat, Michael G. Norris, Stanley B. Smith, III, Christopher M. Werner
  • Publication number: 20100199657
    Abstract: An external combustion engine having an exhaust flow diverter for directing the flow of an exhaust gas. The external combustion engine has a heater head having a plurality of heater tubes through which a working fluid is heated by conduction. The exhaust flow diverter is a cylinder disposed around the outside of the plurality of heater tubes and includes a plurality of openings through which the flow of exhaust gas may pass. The exhaust flow diverter directs the exhaust gas past the plurality of heater tubes. The external combustion engine may also include a plurality of flow diverter fins coupled to the plurality of heater tubes to direct the flow of the exhaust gas. The heater tubes may be U-shaped or helical coiled shaped.
    Type: Application
    Filed: February 2, 2010
    Publication date: August 12, 2010
    Applicant: New Power Concepts LLC
    Inventors: Ryan K. LaRocque, Christopher C. Langenfeld, Michael G. Norris, Stanley B. Smith, III, Jonathan M. Strimling
  • Patent number: 7654074
    Abstract: An external combustion engine having an exhaust flow diverter for directing the flow of an exhaust gas. The external combustion engine has a heater head having a plurality of heater tubes through which a working fluid is heated by conduction. The exhaust flow diverter is a cylinder disposed around the outside of the plurality of heater tubes and includes a plurality of openings through which the flow of exhaust gas may pas. The exhaust flow diverter directs the exhaust gas past the plurality of heater tubes. The external combustion engine may also include a plurality of flow diverter fins coupled to the plurality of heater tubes to direct the flow of the exhaust gas. The heater tubes may be U-shaped or helical coupled shaped.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: February 2, 2010
    Assignee: New Power Concepts LLC
    Inventors: Ryan K. LaRocque, Christopher C. Langenfeld, Michael G. Norris, Stanley B. Smith, Jonathan M. Strimling
  • Patent number: 7308787
    Abstract: An external combustion engine having an exhaust flow diverter for directing the flow of an exhaust gas. The external combustion engine has a heater head having a plurality of heater tubes through which a working fluid is heated by conduction. The exhaust flow diverter is a cylinder disposed around the outside of the plurality of heater tubes and includes a plurality of openings through which the flow of exhaust gas may pas. The exhaust flow diverter directs the exhaust gas past the plurality of heater tubes. The external combustion engine may also include a plurality of flow diverter fins coupled to the plurality of heater tubes to direct the flow of the exhaust gas. The heater tubes may be U-shaped or helical coiled shaped.
    Type: Grant
    Filed: February 15, 2005
    Date of Patent: December 18, 2007
    Assignee: New Power Concepts LLC
    Inventors: Ryan K. LaRocque, Christopher C. Langenfeld, Michael G. Norris, Stanley B. Smith, III, Jonathan M. Strimling
  • Patent number: 6971235
    Abstract: An evaporative burner that includes an igniter assembly, a swirler, an evaporation chamber, and a reverse throat. The reverse throat has raised ends that protrude into the evaporation chamber. The reverse throat in combination with the evaporation chamber and the swirler, facilitate the recirculation of air in the evaporation chamber such that a flame is stabilized near the evaporation chamber walls. This flame gradually evaporates the fuel in the lining of the evaporation chamber. The fuel-air mixture results in a steady and uniformly distributed flame in the combustion chamber. This flame can heat uniformly the walls of the combustion chamber, and thus be applicable for high efficiency and low emissions applications. Furthermore, this burner can start and reach full burner power rapidly.
    Type: Grant
    Filed: February 9, 2004
    Date of Patent: December 6, 2005
    Assignee: New Power Concepts LLC
    Inventors: Christopher C. Langenfeld, Ryan Keith LaRocque, Angus A. MacEachern, Michael G. Norris
  • Publication number: 20040177611
    Abstract: An evaporative burner that includes an igniter assembly, a swirler, an evaporation chamber, and a reverse throat. The reverse throat has raised ends that protrude into the evaporation chamber. The reverse throat in combination with the evaporation chamber and the swirler, facilitate the recirculation of air in the evaporation chamber such that a flame is stabilized near the evaporation chamber walls. This flame gradually evaporates the fuel in the lining of the evaporation chamber. The fuel-air mixture results in a steady and uniformly distributed flame in the combustion chamber. This flame can heat uniformly the walls of the combustion chamber, and thus be applicable for high efficiency and low emissions applications. Furthermore, this burner can start and reach full burner power rapidly.
    Type: Application
    Filed: February 9, 2004
    Publication date: September 16, 2004
    Inventors: Christopher C. Langenfeld, Ryan Keith LaRocque, Angus A. MacEachern, Michael G. Norris
  • Patent number: 6422008
    Abstract: Methods and apparatus for reducing the TPM level of a diesel engine exhaust stream by providing a suitable oxidation catalyst into the exhaust train. The oxidation catalyst may be incorporated into a thermal insulative coating on the inner surface of the exhaust train, particularly the exhaust manifold and exhaust pipes prior to the turbocharger. Alternatively, when the exhaust train includes a turbocharger, the catalyst can be in a separate monolithic unit between the engine and the turbocharger. The system may also include an improved diesel oxidation catalyst unit having a metal monolithic substrate. The oxidation catalyst can also be incorporated into a thermal insulative coating inside the cylinders, particularly on non-rubbing surfaces such as The invention also includes the use of a protective mullite top coat on the thermal coating. A further embodiment is the use of a stainless steel bond coat to bind the thermal coating to a metallic substrate, particularly an aluminum substrate.
    Type: Grant
    Filed: April 16, 2001
    Date of Patent: July 23, 2002
    Assignee: Engelhard Corporation
    Inventors: Kenneth E. Voss, Timothy D. Wildman, Michael G. Norris, Gary W. Rice
  • Patent number: 6256984
    Abstract: Methods and apparatus for reducing the TPM level of a diesel engine exhaust stream by providing a suitable oxidation catalyst into the exhaust train. The oxidation catalyst may be incorporated into a thermal insulative coating on the inner surface of the exhaust train, particularly the exhaust manifold and exhaust pipes prior to the turbocharger. Alternatively, when the exhaust train includes a turbocharger, the catalyst can be in a separate monolithic unit between the engine and the turbocharger. The system may also include an improved diesel oxidation catalyst unit having a metal monolithic substrate. The oxidation catalyst can also be incorporated into a thermal insulative coating inside the cylinders, particularly on non-rubbing surfaces such as The invention also includes the use of a protective mullite top coat on the thermal coating. A further embodiment is the use of a stainless steel bond coat to bind the thermal coating to a metallic substrate, particularly an aluminum substrate.
    Type: Grant
    Filed: September 7, 1999
    Date of Patent: July 10, 2001
    Assignee: Engelhard Corporation
    Inventors: Kenneth E. Voss, Timothy D. Wildman, Michael G. Norris, Gary W. Rice, Anthony J. Rotolico, Arthur J. Fabel, Gerald L. Kutner