Patents by Inventor Michael Guidash

Michael Guidash has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8829637
    Abstract: An image sensor includes front-side and backside photodetectors of a first conductivity type disposed in a substrate layer of the first conductivity type. A front-side pinning layer of a second conductivity type is connected to a first contact. The first contact receives a predetermined potential. A backside pinning layer of the second conductivity type is connected to a second contact. The second contact receives an adjustable and programmable potential.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: September 9, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventors: John P. McCarten, Robert Michael Guidash
  • Publication number: 20140158863
    Abstract: An image sensor architecture is implemented within an image sensor system. Image sensor pixels include pixel regions, and each pixel region includes a photosensor, a reset circuit, and a readout circuit. The readout circuit receives enable signals from an enable signal line, and outputs a pixel signal representative of light captured by the photosensor on a combination input/output line. The reset circuit resets the photosensor in response to receiving a first reset signal on a reset line and a second reset signal on the combination input/output line.
    Type: Application
    Filed: December 2, 2013
    Publication date: June 12, 2014
    Applicant: Rambus Inc.
    Inventor: Michael Guidash
  • Patent number: 8736728
    Abstract: An image sensor includes front-side and backside photodetectors of a first conductivity type disposed in a substrate layer of the first conductivity type. A front-side pinning layer of a second conductivity type is connected to a first contact. The first contact receives a predetermined potential. A backside pinning layer of the second conductivity type is connected to a second contact. The second contact receives an adjustable and programmable potential.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: May 27, 2014
    Assignee: Truesense Imaging, Inc.
    Inventors: John P. McCarten, Robert Michael Guidash
  • Patent number: 8730362
    Abstract: An image sensor includes front-side and backside photodetectors of a first conductivity type disposed in a substrate layer of the first conductivity type. A front-side pinning layer of a second conductivity type is connected to a first contact. The first contact receives a predetermined potential. A backside pinning layer of the second conductivity type is connected to a second contact. The second contact receives an adjustable and programmable potential.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: May 20, 2014
    Assignee: Truesense Imaging, Inc.
    Inventors: John P. McCarten, Robert Michael Guidash
  • Publication number: 20130026548
    Abstract: An image sensor includes front-side and backside photodetectors of a first conductivity type disposed in a substrate layer of the first conductivity type. A front-side pinning layer of a second conductivity type is connected to a first contact. The first contact receives a predetermined potential. A backside pinning layer of the second conductivity type is connected to a second contact. The second contact receives an adjustable and programmable potential.
    Type: Application
    Filed: July 29, 2011
    Publication date: January 31, 2013
    Inventors: John P. McCarten, Robert Michael Guidash
  • Publication number: 20130027598
    Abstract: An image sensor includes front-side and backside photodetectors of a first conductivity type disposed in a substrate layer of the first conductivity type. A front-side pinning layer of a second conductivity type is connected to a first contact. The first contact receives a predetermined potential. A backside pinning layer of the second conductivity type is connected to a second contact. The second contact receives an adjustable and programmable potential.
    Type: Application
    Filed: July 29, 2011
    Publication date: January 31, 2013
    Inventors: John P. McCarten, Robert Michael Guidash
  • Publication number: 20130027597
    Abstract: An image sensor includes front-side and backside photodetectors of a first conductivity type disposed in a substrate layer of the first conductivity type. A front-side pinning layer of a second conductivity type is connected to a first contact. The first contact receives a predetermined potential. A backside pinning layer of the second conductivity type is connected to a second contact. The second contact receives an adjustable and programmable potential.
    Type: Application
    Filed: July 29, 2011
    Publication date: January 31, 2013
    Inventors: John P. McCarten, Robert Michael Guidash
  • Publication number: 20130026342
    Abstract: An image sensor includes front-side and backside photodetectors of a first conductivity type disposed in a substrate layer of the first conductivity type. A front-side pinning layer of a second conductivity type is connected to a first contact. The first contact receives a predetermined potential. A backside pinning layer of the second conductivity type is connected to a second contact. The second contact receives an adjustable and programmable potential.
    Type: Application
    Filed: July 29, 2011
    Publication date: January 31, 2013
    Inventors: John P. McCarten, Robert Michael Guidash
  • Publication number: 20130026594
    Abstract: An image sensor includes front-side and backside photodetectors of a first conductivity type disposed in a substrate layer of the first conductivity type. A front-side pinning layer of a second conductivity type is connected to a first contact. The first contact receives a predetermined potential. A backside pinning layer of the second conductivity type is connected to a second contact. The second contact receives an adjustable and programmable potential.
    Type: Application
    Filed: July 29, 2011
    Publication date: January 31, 2013
    Inventors: John P. McCarten, Robert Michael Guidash
  • Patent number: 8339494
    Abstract: An image sensor includes front-side and backside photodetectors of a first conductivity type disposed in a substrate layer of the first conductivity type. A front-side pinning layer of a second conductivity type is connected to a first contact. The first contact receives a predetermined potential. A backside pinning layer of the second conductivity type is connected to a second contact. The second contact receives an adjustable and programmable potential.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: December 25, 2012
    Assignee: Truesense Imaging, Inc.
    Inventors: John P. McCarten, Robert Michael Guidash
  • Patent number: 8158453
    Abstract: A CMOS active pixel sensor (APS) cell structure having dual workfunction transfer gate device and method of fabrication. The transfer gate device comprises a dielectric layer formed on a substrate and a dual workfunction gate conductor layer formed on the dielectric layer comprising a first conductivity type doped region and an abutting second conductivity type doped region. The transfer gate device defines a channel region where charge accumulated by a photosensing device is transferred to a diffusion region. A silicide structure is formed atop the dual workfunction gate conductor layer for electrically coupling the first and second conductivity type doped regions. In one embodiment, the silicide contact is smaller in area dimension than an area dimension of said dual workfunction gate conductor layer. Presence of the silicide strap prevents the diodic behavior from allowing one or the other side of the gate to float to an indeterminate voltage.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: April 17, 2012
    Assignees: International Business Machines Corporation, Omnivision Technologies, Inc.
    Inventors: James W. Adkisson, John J. Ellis-Monaghan, R. Michael Guidash, Mark D. Jaffe, Edward T. Nelson, Richard J. Rassel, Charles V. Stancampiano
  • Patent number: 7969469
    Abstract: A primary integrated image sensor is operatively connected to one or more secondary image sensors. The primary integrated image sensor includes a pixel array integrated on a semiconductor substrate along with one or more of an image signal processing circuit, readout circuitry, a digital serial interface, storage, a timing circuit, an analog-to-digital converter, and a bi-directional digital input/output circuit. Each secondary image sensor can be implemented as a Complementary Metal Oxide Semiconductor (CMOS) or a Charge Coupled Device (CCD) image sensor and include a pixel array along with one or more of a readout circuitry, a digital serial interface, a timing circuit, an output circuit, and an optional analog-to-digital converter. Images captured by the primary integrated image sensor and each secondary image sensor are processed by the primary image sensor. Each secondary image sensor can also transmit physical and operational data to the primary integrated image sensor.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: June 28, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventor: R. Michael Guidash
  • Publication number: 20100136733
    Abstract: A CMOS active pixel sensor (APS) cell structure having dual workfunction transfer gate device and method of fabrication. The transfer gate device comprises a dielectric layer formed on a substrate and a dual workfunction gate conductor layer formed on the dielectric layer comprising a first conductivity type doped region and an abutting second conductivity type doped region. The transfer gate device defines a channel region where charge accumulated by a photosensing device is transferred to a diffusion region. A silicide structure is formed atop the dual workfunction gate conductor layer for electrically coupling the first and second conductivity type doped regions. In one embodiment, the silicide contact is smaller in area dimension than an area dimension of said dual workfunction gate conductor layer. Presence of the silicide strap prevents the diodic behavior from allowing one or the other side of the gate to float to an indeterminate voltage.
    Type: Application
    Filed: February 3, 2010
    Publication date: June 3, 2010
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, EASTMAN KODAK COMPANY
    Inventors: James W. Adkisson, John J. Ellis-Monaghan, R. Michael Guidash, Mark D. Jaffe, Edward T. Nelson, Richard J. Rassel, Charles V. Stancampiano
  • Patent number: 7705900
    Abstract: An image sensor includes a plurality of pixels, at least two pixels each having a photodetector; a charge-to-voltage conversion region; an input to an amplifier; and a switch for selectively connecting the charge-to-voltage conversion regions.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: April 27, 2010
    Assignee: Eastman Kodak Company
    Inventor: R. Michael Guidash
  • Patent number: 7674648
    Abstract: A method for reading out an image sensor, the method includes the steps of integrating charge in a photodetector with the photodetector at a first capacitance; reading the resulting signal level at a first time with the photodetector at the first capacitance; changing the photodetector capacitance to a second capacitance; and reading the signal level associated with the photodetector at the second capacitance.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: March 9, 2010
    Assignee: Eastman Kodak Company
    Inventors: John T. Compton, R. Michael Guidash
  • Patent number: 7675097
    Abstract: A CMOS active pixel sensor (APS) cell structure having dual workfunction transfer gate device and method of fabrication. The transfer gate device comprises a dielectric layer formed on a substrate and a dual workfunction gate conductor layer formed on the dielectric layer comprising a first conductivity type doped region and an abutting second conductivity type doped region. The transfer gate device defines a channel region where charge accumulated by a photosensing device is transferred to a diffusion region. A silicide structure is formed atop the dual workfunction gate conductor layer for electrically coupling the first and second conductivity type doped regions. In one embodiment, the silicide contact is smaller in area dimension than an area dimension of said dual workfunction gate conductor layer. Presence of the silicide strap prevents the diodic behavior from allowing one or the other side of the gate to float to an indeterminate voltage.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: March 9, 2010
    Assignees: International Business Machines Corporation, Eastman Kodak Company
    Inventors: James W. Adkisson, John J. Ellis-Monaghan, R. Michael Guidash, Mark D. Jaffe, Edward T. Nelson, Richard J. Rassel, Charles V. Stancampiano
  • Publication number: 20090141146
    Abstract: A primary integrated image sensor is operatively connected to one or more secondary image sensors. The primary integrated image sensor includes a pixel array integrated on a semiconductor substrate along with one or more of an image signal processing circuit, readout circuitry, a digital serial interface, storage, a timing circuit, an analog-to-digital converter, and a bi-directional digital input/output circuit. Each secondary image sensor can be implemented as a Complementary Metal Oxide Semiconductor (CMOS) or a Charge Coupled Device (CCD) image sensor and include a pixel array along with one or more of a readout circuitry, a digital serial interface, a timing circuit, an output circuit, and an optional analog-to-digital converter. Images captured by the primary integrated image sensor and each secondary image sensor are processed by the primary image sensor. Each secondary image sensor can also transmit physical and operational data to the primary integrated image sensor.
    Type: Application
    Filed: November 30, 2007
    Publication date: June 4, 2009
    Inventor: R. Michael Guidash
  • Publication number: 20080231727
    Abstract: A method for reading out an image sensor, the method includes the steps of integrating charge in a photodetector with the photodetector at a first capacitance; reading the resulting signal level at a first time with the photodetector at the first capacitance; changing the photodetector capacitance to a second capacitance; and reading the signal level associated with the photodetector at the second capacitance.
    Type: Application
    Filed: March 21, 2007
    Publication date: September 25, 2008
    Inventors: John T. Compton, R. Michael Guidash
  • Publication number: 20080128767
    Abstract: A CMOS active pixel sensor (APS) cell structure having dual workfunction transfer gate device and method of fabrication. The transfer gate device comprises a dielectric layer formed on a substrate and a dual workfunction gate conductor layer formed on the dielectric layer comprising a first conductivity type doped region and an abutting second conductivity type doped region. The transfer gate device defines a channel region where charge accumulated by a photosensing device is transferred to a diffusion region. A silicide structure is formed atop the dual workfunction gate conductor layer for electrically coupling the first and second conductivity type doped regions. In one embodiment, the silicide contact is smaller in area dimension than an area dimension of said dual workfunction gate conductor layer. Presence of the silicide strap prevents the diodic behavior from allowing one or the other side of the gate to float to an indeterminate voltage.
    Type: Application
    Filed: December 1, 2006
    Publication date: June 5, 2008
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, EASTMAN KODAK COMPANY
    Inventors: James W. Adkisson, John J. Ellis-Monaghan, R. Michael Guidash, Mark D. Jaffe, Edward T. Nelson, Richard J. Rassel, Charles V. Stancampiano
  • Patent number: 7361877
    Abstract: An image sensor includes a two-dimensional array of pixels having a photodetector for collecting charge in response to incident light; a storage region adjacent the photodetector that receives the charge from the photodetector; a sense node adjacent the storage region that receives the charge from the storage region and converts the charge to a voltage signal; and an input to an amplifier for sensing the voltage signal from the sense node.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: April 22, 2008
    Assignee: Eastman Kodak Company
    Inventors: R. Daniel McGrath, R. Michael Guidash