Patents by Inventor Michael J. Cheresnowsky

Michael J. Cheresnowsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5734960
    Abstract: A process for producing potassium and silicon doped molybdenum (KS molybdenum). The process involves mixing an aqueous ammonium molybdate solution and a dilute aqueous potassium silicate solution. The molybdate solution has a pH and a specific gravity sufficient to promote formation of diammonium molybdate crystals in the mixture. Preferably, the pH is about 8.8-11.0 and the specific gravity is about 1.20-1.32. The amount of potassium silicate and the amount of potassium silicate solution are selected to provide predetermined amounts of potassium and silicon in the mixture, preferably about 800-1300 ppm potassium and about 500-1100 ppm silicon, both amounts based on the amount of molybdenum. The mixture is heated to aid dissolution of the potassium silicate and ammonium molybdate in said mixture and to produce a homogeneous solution of ammonium molybdate, potassium, and silicon.
    Type: Grant
    Filed: August 29, 1994
    Date of Patent: March 31, 1998
    Assignee: Osram Sylvania Inc.
    Inventors: Thomas J. Patrician, Michael J. Miller, James N. Christini, Michael J. Cheresnowsky, Vernon L. Carr, Jr.
  • Patent number: 5273726
    Abstract: Aluminum is removed from ammonium molybdate solution by the use of Mg.sup.+2 in the solution to precipitate out the aluminum.
    Type: Grant
    Filed: May 6, 1991
    Date of Patent: December 28, 1993
    Assignee: GTE Products Corporation
    Inventors: Michael J. Cheresnowsky, Michael J. Miller, Shirley S. Schaeffer
  • Patent number: 5271911
    Abstract: An improved method for substantially removing potassium from potassium-bearing molybdenum trioxide involves the use of a leach solution in a weight ratio of seven parts of the leach solution to one part molybdenum trioxide at a temperature of at least 90.degree. C.
    Type: Grant
    Filed: October 30, 1992
    Date of Patent: December 21, 1993
    Assignee: GTE Products Corporation
    Inventor: Michael J. Cheresnowsky
  • Patent number: 5154757
    Abstract: A method for producing pure cobalt metal powder involves the removal of divalent cationic impurities from a trivalent hexamine cobalt chloride solution. This solution is then decomposed to an insoluble cobalt oxide-containing material, from which pure cobalt metal powder is obtained through a chemical reduction process.
    Type: Grant
    Filed: October 28, 1991
    Date of Patent: October 13, 1992
    Assignee: GTE Products Corporation
    Inventors: Michael J. Miller, Thomas A. Wolfe, Michael J. Cheresnowsky, Tai K. Kim
  • Patent number: 5082637
    Abstract: Potassium impurity is removed from ammonium molybdate by dissolving the ammonium molybdate in hot acid, allowing the acid solution to cool whereby the ammonium molybdate precipitates out of the solution as molybdenum trioxide and then separating, washing and drying the molybdenum trioxide.
    Type: Grant
    Filed: November 2, 1990
    Date of Patent: January 21, 1992
    Assignee: GTE Products Corporation
    Inventors: Michael J. Cheresnowsky, Timothy J. Hoffman
  • Patent number: 5045121
    Abstract: A method is disclosed for removing carbon from the surface of a cemented tungsten carbide article which comprises contacting a cemented tungsten carbide article with an aqueous solution of hydrogen peroxide having a concentration of at least about 5% by volume hydrogen perioxide for a sufficient length of time to remove the major portion of the carbon from the surfaces of the article.
    Type: Grant
    Filed: February 4, 1991
    Date of Patent: September 3, 1991
    Assignee: GTE Products Corporation
    Inventors: Timothy J. Hoffman, Robert G. Mendenhall, Michael J. Cheresnowsky
  • Patent number: 5002740
    Abstract: A process is disclosed for purifying molybdenum containing arsenic and phosphorus which involves leaching molybdenum trioxide in an acid at a temperature of above about 70.degree. C.
    Type: Grant
    Filed: January 26, 1989
    Date of Patent: March 26, 1991
    Assignee: GTE Products Corporation
    Inventors: Michael J. Cheresnowsky, Judy L. Scheftic
  • Patent number: 4999169
    Abstract: A method of separating tungsten from molybdenum wherein impure acid leached molybdenum trioxide containing tungsten is combined with ammonium hydroxide to form an ammonium molybdate solution, the solution is contacted with tin (IV) oxide hydrate to cause sorption of essentially all of the tungsten contained therein without causing sorption of molybdenum, the tin (IV) oxide hydrate with the sorped tungsten is separated from the ammonium molybdate solution, and the ammonium molybdate solution is dried and fired to obtain purified molybdenum trioxide.
    Type: Grant
    Filed: October 26, 1988
    Date of Patent: March 12, 1991
    Assignee: GTE Products Corporation
    Inventor: Michael J. Cheresnowsky
  • Patent number: 4814148
    Abstract: A method is disclosed for purifying ammonium dimolybdate which comprises dissolving ammonium dimolybdate containing arsenic as an impurity in water to form an ammonium molybdate solution and insolubles containing essentially all of the arsenic, filtering off the insolubles from the solution, adjusting the pH of the solution to at least about 9.0 and then crystallizing pure ammonium dimolybdate from the solution wherein the arsenic content is less than about 8 weight ppm.
    Type: Grant
    Filed: April 4, 1988
    Date of Patent: March 21, 1989
    Assignee: GTE Products Corporation
    Inventors: Michael J. Cheresnowsky, Judy L. Scheftic
  • Patent number: 4798623
    Abstract: A method is disclosed for producing fine cobalt metal powder which comprises adding to a solution of cobaltous chloride, sodium hydroxide in an amount equal to at least the stoichiometric amount required to form a precipitate of the major portion of the cobalt as cobaltous hydroxide and a mother liquor containing the balance of the starting cobalt, separating the precipitate from the mother liquor, water washing the precipitate to remove essentially all of the sodium therefrom, and reducing the precipitate to fine cobalt metal powder having an FSSS of from about 0.5 to about 2.0. Drying of the precipitate before reduction results in the fine cobalt metal powder having essentially no tailings.
    Type: Grant
    Filed: February 19, 1988
    Date of Patent: January 17, 1989
    Assignee: GTE Products Corporation
    Inventor: Michael J. Cheresnowsky
  • Patent number: 4735791
    Abstract: A process is disclosed for producing ammonium molybdate from molybdenum trioxide which involves digesting molybdenum trioxide with ammonia in a sealed vessel equipped with one or more stirrers at a temperature of from about 20.degree. C. to about 80.degree. C., with the amount of ammonia being equal to the stoichiometric amount needed to form normal ammonium molybdate, up to about 2.9 times this stoichiometric amount, to form an ammonium molybdate solution containing essentially all of the starting molybdenum; followed by separating the solution from any insolubles. The method is especially useful for molybdenum containing iron as an impurity. Essentially all of the iron reports with the insolubles.
    Type: Grant
    Filed: April 3, 1987
    Date of Patent: April 5, 1988
    Assignee: GTE Products Corporation
    Inventor: Michael J. Cheresnowsky
  • Patent number: 4724128
    Abstract: A method is disclosed for purifying molybdenum which involves reducing a molybdenum compound selected from the group consisting of molybdenum trioxide, ammonium dimolybdate, and ammonium paramolybdate to molybdenum dioxide which is then water washed to remove potassium, and produce a purified molybdenum dioxide having a potassium content of no greater than about 30 weight ppm, followed by separating the wash water from the purified molybdenum dioxide.
    Type: Grant
    Filed: July 20, 1987
    Date of Patent: February 9, 1988
    Assignee: GTE Products Corporation
    Inventors: Michael J. Cheresnowsky, Edward L. Bok, Martin B. MacInnis
  • Patent number: 4702895
    Abstract: A method is disclosed for purifying molybdenum which involves adding to an ammoniacal ammonium molybdate solution containing the impurities of phosphorus and arsenic with the phosphorus concentration being from about 0.01 to about 0.12 g/l, a soluble magnesium salt to form a precipitate comprising magnesium ammonium salts of the phosphorus and arsenic, and to form a purified ammonium molybdate solution. The amount of the magnesium salt is sufficient to result in a concentration of from about 0.005 to about 0.04 moles/l in the ammoniacal ammonium molybdate solution. The resulting purified ammonium molybdate contains no greater than about 0.01 g P/l. The precipitate is separated from the purified solution which is then contacted with a chelating cation exchange resin supplying a sufficient amount of a cation to result in removal of the major portion of the magnesium ions from the purified solution and form a further purified ammonium molybdate solution.
    Type: Grant
    Filed: May 2, 1986
    Date of Patent: October 27, 1987
    Assignee: GTE Products Corporation
    Inventors: Michael J. Cheresnowsky, Timothy A. Brunelli, Tai K. Kim
  • Patent number: 4643884
    Abstract: A process is disclosed for removing potassium from relatively impure molybdenum trioxide. The process involves contacting the impure molybdenum trioxide containing greater than about 600 weight parts potassium per million with a first acid leach which consists essentially of nitric acid and ammonium nitrate at a temperature of at least about 50.degree. C. for a sufficient time and at above a 2 molar concentration of said nitric acid and an ammonium nitrate concentration of from about 1.5 to about 2 molar in said first acid leach to solubilize the major portion of the potassium and form a once leached molybdenum trioxide containing the remaining portion of the potassium which is separated from the resulting potassium containing acid leach and contacted with a second leach solution substantially similar to the first acid leach followed by separating the resulting twice leached molybdenum trioxide from the resulting potassium containing second leach.
    Type: Grant
    Filed: March 31, 1986
    Date of Patent: February 17, 1987
    Assignee: GTE Products Corporaton
    Inventors: Michael J. Cheresnowsky, Timothy A. Brunelli, Robin W. Munn
  • Patent number: 4612172
    Abstract: A process is disclosed for removing potassium from a relatively impure molybdenum trioxide and forming a molybdenum compound of high purity. The process involves first contacting the impure molybdenum trioxide with an acid leach which consists essentially of a mineral acid and the ammonium salt of the mineral acid in a weight ratio of above about 3 to 1 of acid leach to molybdenum trioxide at a sufficient temperature and for a sufficient time to solubilize the major portion of the potassium and form a leached molybdenum trioxide, followed by separating the leached molybdenum trioxide from the resulting potassium containing acid leach. The leached molybdenum trioxide is then water washed to remove residual impurities and the washed molybdenum trioxide is dissolved in ammonium hydroxide having an ammonium concentration sufficient to form an ammonium molybdate solution from which is crystallized the highly pure molybdenum compound.
    Type: Grant
    Filed: February 22, 1985
    Date of Patent: September 16, 1986
    Assignee: GTE Products Corporation
    Inventors: Timothy A. Brunelli, Michael J. Cheresnowsky
  • Patent number: 4604266
    Abstract: Processes are described for preparing pure ammonium molybdate from impure roasted molybdenum concentrates. An aqueous solution of nitric acid and ammonium nitrate is contacted with impure molybdenum concentrate to solubilize a major portion of the impurities. The resulting molybdenum concentrate is digested in ammonium hydroxide under conditions that maximize iron precipitation and removal. The resulting ammonium molybdate solution is separated from the sludge and further purified by chelating cation exchange resin in the ammonium form.
    Type: Grant
    Filed: March 27, 1985
    Date of Patent: August 5, 1986
    Assignee: GTE Products Corporation
    Inventors: Michael J. Cheresnowsky, Timothy A. Brunelli, Robin W. Munn, Tai K. Kim
  • Patent number: 4604267
    Abstract: Processes are described for preparing pure ammonium molybdate from impure roasted molybdenum concentrates. An aqueous solution of nitric acid, ammonium sulfate, and ammonium nitrate is contacted with impure molybdenum concentrate to solubilize a major portion of the impurities. The resulting molybdenum concentrate is digested in ammonium hydroxide under conditions that maximize iron precipitation and removal. The resulting ammonium molybdate solution is separated from the sludge and further purified by chelating cation exchange resin in the ammonium form.
    Type: Grant
    Filed: March 27, 1985
    Date of Patent: August 5, 1986
    Assignee: GTE Products Corporation
    Inventor: Michael J. Cheresnowsky
  • Patent number: 4601890
    Abstract: Processes are described for preparing pure ammonium molybdate from impure roasted molybdenum concentrates. An aqueous solution of hydrochloric acid and ammonium nitrate is contacted with impure molybdenum concentrate to solubilize a major portion of the impurities. The resulting molybdenum concentrate is digested in ammonium hydroxide under conditions that maximize iron precipitation and removal. The resulting ammonium molybdate solution is separated from the sludge and further purified by chelating cation exchange resin in the ammonium form.
    Type: Grant
    Filed: March 27, 1985
    Date of Patent: July 22, 1986
    Assignee: GTE Products Corporation
    Inventor: Michael J. Cheresnowsky
  • Patent number: 4596701
    Abstract: Processes are described for preparing pure ammonium molybdate from impure roasted molybdenum concentrates. An aqueous solution of sulfuric acid, ammonium sulfate, and ammonium persulfate is contacted with impure molybdenum concentrate to solubilize a major portion of the impurities. The resulting molybdenum concentrate is digested in ammonium hydroxide under conditions that maximize iron precipitation and removal. The resulting ammonium molybdate solution is separated from the sludge and further purified by chelating cation exchange resin in the ammonium form.
    Type: Grant
    Filed: March 27, 1985
    Date of Patent: June 24, 1986
    Assignee: GTE Products Corporation
    Inventors: Michael J. Cheresnowsky, Brice E. Martin
  • Patent number: 4555386
    Abstract: Processes are described for preparing pure ammonium molybdate from impure roasted molybdenum concentrates. An aqueous solution of nitric acid, ammmonium sulfate, and ammonium nitrate is contacted with impure molybdenum concentrate to solubilize a major portion of the impurities. The resulting molybdenum concentrate is digested in ammonium hydroxide under conditions that maximize iron precipitation and removal. The resulting ammonium molybdate solution is separated from the sludge and further purified by chelating cation exchange resin in the ammonium form.
    Type: Grant
    Filed: February 29, 1984
    Date of Patent: November 26, 1985
    Assignee: GTE Products Corporation
    Inventor: Michael J. Cheresnowsky