Patents by Inventor Michael J. O'Phelan

Michael J. O'Phelan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6597564
    Abstract: A multi-anodic aluminum electrolytic capacitor includes an electrical connection to the multiple porous (e.g., tunnel-etched) anodes in an anode stack using a single anode tab that is attached only to a first anode. Other anodes are electrically coupled to the anode tab through the first anode. Anodes in the anode stack are in intimate physical and electrical contact with other such anodes as a result of layering effected by planar stacking or cylindrical winding. The need for separate tabs to different anode layers is eliminated or at least minimized, thereby reducing capacitor volume, increasing capacitor reliability, and reducing the cost and complexity of the capacitor manufacturing process for multi-anodic capacitors. The capacitor is capable of use in implantable defibrillators, camera photoflashes, and other electric circuit applications.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: July 22, 2003
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, Robert R. Tong, James M. Poplett, Luke J. Christenson, Alexander Gordon Barr, Brian V. Waytashek
  • Patent number: 6571126
    Abstract: In one aspect, a method of manufacturing a capacitor includes disposing one or more conductive layers of a first electrode stack in a recess of an alignment mechanism, where the recess is positioned relative to two or more alignment elements. The method further includes placing a separator over the one or more conductive layers where an outer edge of the separator contacts the two or more alignment elements. In one embodiment, a capacitor includes anode and cathode foils having offsetting edge portions. In one embodiment, a multiple tab cathode for a flat capacitor. A plurality of cathode tabs are portioned into a plurality of cathode tab groups positioned in different locations along the edge of the capacitor stack to reduce the amount of space required for connecting and routing the cathode tabs.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: May 27, 2003
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, James M. Poplett, Robert R. Tong, A. Gordon Barr, Richard J. Kavanagh, Brian V. Waytashek
  • Patent number: 6556863
    Abstract: Implantable defibrillators are implanted into the chests of patients prone to suffering ventricular fibrillation, a potentially fatal heart condition. A critical component in these devices is an aluminum electrolytic capacitors, which stores and delivers one or more life-saving bursts of electric charge to a fibrillating heart. To reduce the size of these devices, capacitor manufacturers have developed special aluminum foils, for example core-etched and tunnel-etched aluminum foils. Unfortunately, core-etched foils don't work well in multiple-anode capacitors, and tunnel-etched foils are quite brittle and tend to break when making some common types of capacitors. Accordingly, the inventors devised a new foil structure having one or more perforations and one or more cavities with a depth less than the foil thickness.
    Type: Grant
    Filed: October 2, 1998
    Date of Patent: April 29, 2003
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, Luke J. Christenson, James M. Poplett, Robert R. Tong
  • Publication number: 20030072124
    Abstract: In one aspect, a method of interconnecting two or more foils of a capacitor, the method comprising connecting together one or more anode connection members of one or more anode foils and one or more cathode connection members of one or more cathode foils and electrically isolating the one or more anode foils from the one or more cathode foils.
    Type: Application
    Filed: November 19, 2002
    Publication date: April 17, 2003
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, Brian L. Schmidt, Michael Krautkramer, Gregory J. Sherwood, A. Gordon Barr
  • Publication number: 20030058606
    Abstract: Implantable heart-monitoring devices, such as defibrillators, pacemakers, and cardioverters, detect onset of abnormal heart rhythms and automatically apply corrective electrical therapy, specifically one or more bursts of electric charge, to abnormally beating hearts. Critical parts in these devices include the capacitors that store and deliver the bursts of electric charge. Some devices use flat aluminum electrolytic capacitors have cases with right-angle corners which leave gaps when placed against the rounded interior surfaces of typical device housings. These gaps and voids not only waste space, but ultimately force patients to endure implantable devices with larger housings than otherwise necessary. Accordingly, the inventors devised several capacitor structures that have curved profiles conforming to the rounded interior surfaces of device housings.
    Type: Application
    Filed: November 4, 2002
    Publication date: March 27, 2003
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, Brian L. Schmidt
  • Patent number: 6535374
    Abstract: Implantable defibrillators are implanted into the chests of patients prone to suffering ventricular fibrillation, a potentially fatal heart condition. A critical component in these devices is an aluminum electrolytic capacitors, which stores and delivers one or more life-saving bursts of electric charge to a fibrillating heart. These capacitors make up about one third the total size of the defibrillators. Unfortunately, conventional manufacturers of these capacitors have paid little or no attention to reducing the size of these capacitors through improved capacitor packaging. Accordingly, the inventors contravened several conventional manufacturing principles and practices to devise unique space-saving packaging that allows dramatic size reduction.
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: March 18, 2003
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, James M. Poplett, Robert R. Tong, Alexander Gordon Barr
  • Patent number: 6522525
    Abstract: Implantable heart-monitoring devices, such as defibrillators, pacemakers, and cardioverters, detect onset of abnormal heart rhythms and automatically apply corrective electrical therapy, specifically one or more bursts of electric charge, to abnormally beating hearts. Critical parts in these devices include the capacitors that store and deliver the bursts of electric charge. Some devices use flat aluminum electrolytic capacitors have cases with right-angle corners which leave gaps when placed against the rounded interior surfaces of typical device housings. These gaps and voids not only waste space, but ultimately force patients to endure implantable devices with larger housings than otherwise necessary. Accordingly, the inventors devised several capacitor structures that have curved profiles conforming to the rounded interior surfaces of device housings.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: February 18, 2003
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, Brian L. Schmidt
  • Patent number: 6509588
    Abstract: In one aspect, a method of interconnecting two or more foils of a capacitor, the method comprising connecting together one or more anode connection members of one or more anode foils and one or more cathode connection members of one or more cathode foils and electrically isolating the one or more anode foils from the one or more cathode foils.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: January 21, 2003
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, Michael Krautkramer, Gregory J. Sherwood, A. Gordon Barr
  • Publication number: 20020133209
    Abstract: Implantable defibrillators are implanted into the chests of patients prone to suffering ventricular fibrillation, a potentially fatal heart condition. Critical components in these devices are aluminum electrolytic capacitors, which store and deliver one or more life-saving bursts of electric charge to a fibrillating heart. These capacitors make up about one third the total size of the defibrillators. Unfortunately, manufacturers of these capacitors have paid little or no attention to reducing the size of these capacitors through improved capacitor packaging. Accordingly, the inventors devised a unique capacitor lid, or header, assembly that allows size reduction. Specifically, one embodiment of the header assembly includes two recesses, each with a depth that allows the head of a rivet (or other fastener) to be substantially flush, or coplanar, with the underside of the header. Another embodiment includes a single recess to receive two rivet heads.
    Type: Application
    Filed: February 26, 2002
    Publication date: September 19, 2002
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, Robert R. Tong, Luke J. Christenson, Steven A. Rubin
  • Patent number: 6426864
    Abstract: Implantable defibrillators are implanted into the chests of patients prone to suffering ventricular fibrillation, a potentially fatal heart condition. A critical component in these devices is an aluminum electrolytic capacitors, which stores and delivers one or more life-saving bursts of electric charge to a fibrillating heart. To reduce the size of these devices, capacitor manufacturers have developed special aluminum foils, for example core-etched and tunnel-etched aluminum foils. Unfortunately, core-etched foils don't work well in multiple-anode capacitors, and tunnel-etched foils are quite brittle and tend to break when making some common types of capacitors. Accordingly, the inventors devised a new foil structure having one or more perforations and one or more cavities with a depth less than the foil thickness.
    Type: Grant
    Filed: June 29, 2000
    Date of Patent: July 30, 2002
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, Luke J. Christenson, James M. Poplett, Robert R. Tong
  • Patent number: 6421226
    Abstract: Implantable defibrillators are implanted into the chests of patients prone to suffering ventricular fibrillation, a potentially fatal heart condition. A critical component in these devices is an aluminum electrolytic capacitors, which stores and delivers one or more life-saving bursts of electric charge to a fibrillating heart. To reduce the size of these devices, capacitor manufacturers have developed special aluminum foils, for example core-etched and tunnel-etched aluminum foils. Unfortunately, core-etched foils don't work well in multiple-anode capacitors, and tunnel-etched foils are quite brittle and tend to break when making some common types of capacitors. Accordingly, the inventors devised a new foil structure having one or more perforations and one or more cavities with a depth less than the foil thickness.
    Type: Grant
    Filed: June 29, 2000
    Date of Patent: July 16, 2002
    Assignee: Cardiac Pacemakes, Inc.
    Inventors: Michael J. O'Phelan, Luke J. Christenson, James M. Poplett, Robert R. Tong
  • Patent number: 6385490
    Abstract: Implantable defibrillators are implanted into the chests of patients prone to suffering ventricular fibrillation, a potentially fatal heart condition. Critical components in these devices are aluminum electrolytic capacitors, which store and deliver one or more life-saving bursts of electric charge to a fibrillating heart. These capacitors make up about one third the total size of the defibrillators. Unfortunately, manufacturers of these capacitors have paid little or no attention to reducing the size of these capacitors through improved capacitor packaging. Accordingly, the inventors devised a unique capacitor lid, or header, assembly that allows size reduction. Specifically, one embodiment of the header assembly includes two recesses, each with a depth that allows the head of a rivet (or other fastener) to be substantially flush, or coplanar, with the underside of the header. Another embodiment includes a single recess to receive two rivet heads.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: May 7, 2002
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, Robert R. Tong, Luke J. Christenson, Steven A. Rubin
  • Publication number: 20020034062
    Abstract: A multi-anodic aluminum electrolytic capacitor includes an electrical connection to the multiple porous (e.g., tunnel-etched) anodes in an anode stack using a single anode tab that is attached only to a first anode. Other anodes are electrically coupled to the anode tab through the first anode. Anodes in the anode stack are in intimate physical and electrical contact with other such anodes as a result of layering effected by planar stacking or cylindrical winding. The need for separate tabs to different anode layers is eliminated or at least minimized, thereby reducing capacitor volume, increasing capacitor reliability, and reducing the cost and complexity of the capacitor manufacturing process for multi-anodic capacitors. The capacitor is capable of use in implantable defibrillators, camera photoflashes, and other electric circuit applications.
    Type: Application
    Filed: June 19, 2001
    Publication date: March 21, 2002
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, Robert R. Tong, James M. Poplett, Luke J. Christenson, Alexander Gordon Barr, Brian V. Waytashek
  • Publication number: 20010016757
    Abstract: Implantable defibrillators are implanted into the chests of patients prone to suffering ventricular fibrillation, a potentially fatal heart condition. A critical component in these devices is an aluminum electrolytic capacitors, which stores and delivers one or more life-saving bursts of electric charge to a fibrillating heart. These capacitors make up about one third the total size of the defibrillators. Unfortunately, conventional manufacturers of these capacitors have paid little or no attention to reducing the size of these capacitors through improved capacitor packaging. Accordingly, the inventors contravened several conventional manufacturing principles and practices to devise unique space-saving packaging that allows dramatic size reduction.
    Type: Application
    Filed: April 26, 2001
    Publication date: August 23, 2001
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, James M. Poplett, Robert R. Tong, Alexander Gordon Barr
  • Patent number: 6275729
    Abstract: Implantable defibrillators are implanted into the chests of patients prone to suffering ventricular fibrillation, a potentially fatal heart condition. A critical component in these devices is an aluminum electrolytic capacitors, which stores and delivers one or more life-saving bursts of electric charge to a fibrillating heart. These capacitors make up about one third the total size of the defibrillators. Unfortunately, conventional manufacturers of these capacitors have paid little or no attention to reducing the size of these capacitors through improved capacitor packaging. Accordingly, the inventors contravened several conventional manufacturing principles and practices to devise unique space-saving packaging that allows dramatic size reduction.
    Type: Grant
    Filed: October 2, 1998
    Date of Patent: August 14, 2001
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, James M. Poplett, Robert R. Tong, Alexander Gordon Barr
  • Patent number: 6249423
    Abstract: A multi-anodic aluminum electrolytic capacitor includes an electrical connection to the multiple porous (e.g., tunnel-etched) anodes in an anode stack using a single anode tab that is attached only to a first anode. Other anodes are electrically coupled to the anode tab through the first anode. Anodes in the anode stack are in intimate physical and electrical contact with other such anodes as a result of layering effected by planar stacking or cylindrical winding. The need for separate tabs to different anode layers is eliminated or at least minimized, thereby reducing capacitor volume, increasing capacitor reliability, and reducing the cost and complexity of the capacitor manufacturing process for multi-anodic capacitors. The capacitor is capable of use in implantable defibrillators, camera photoflashes, and other electric circuit applications.
    Type: Grant
    Filed: April 21, 1998
    Date of Patent: June 19, 2001
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, Robert R. Tong, James M. Poplett, Luke J. Christenson, Alexander Gordon Barr, Brian V. Waytashek
  • Patent number: 6110233
    Abstract: A wound multi-anodic electrolytic capacitor has a multi-anode stack of strips of high foil gain tunnel-etched aluminum. Inner end edges the anodes in a multi-anode stack are offset from each other by a predetermined distance. Offsetting the end edges of the anodes advantageously reduces mechanical stresses in the capacitor windings. This increases the reliability of the capacitor and advantageously allows a smaller diameter mandrel opening, increasing the energy density per unit volume of the capacitor and allowing its volume to be reduced. When used in an implantable defibrillator or other cardiac rhythm management device, the smaller capacitor advantageously reduces its volume or, alternatively, allows the use of a larger battery, thereby prolonging its useable life.
    Type: Grant
    Filed: May 11, 1998
    Date of Patent: August 29, 2000
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, Robert R. Tong, James M. Poplett
  • Patent number: 6055455
    Abstract: A cardiac pacing system comprises a pulse generator which includes a housing. Electronics are placed within the housing. Attached to the pulse generator is a lead. The lead has electrodes which are attached to the surface of the heart. The lead carries signals to and from the heart. The electronics use the signals from the heart to make decisions regarding signals to send to the heart to correct for various arrhythmias. A capacitive filter for filtering out electromagnetic interference is positioned on the lead so that unfiltered electromagnetic interference remains outside the housing of the pulse generator. The capacitor can be positioned outside the housing or positioned within a ferrule in an opening of the housing.
    Type: Grant
    Filed: January 6, 1997
    Date of Patent: April 25, 2000
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, Nick A. Youker
  • Patent number: 5876424
    Abstract: An implantable medical device and method of making the same. The device includes an electronic component sub-assembly with an exterior surface. A plurality of electronic components are disposed spaced apart and internal to the external surface. The components define voids between one another. The voids are filled with an electrically insulative material which is substantially rigid. An ultra-thin hermetic shell is then formed over the exterior surface of the implantable medical device.
    Type: Grant
    Filed: January 23, 1997
    Date of Patent: March 2, 1999
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, Farrell Oleen
  • Patent number: H1765
    Abstract: An implantable battery and device incorporating an internal fuse is disclosed. The internal fuse is incorporated into the implantable battery. Upon a malfunction within the device or the battery causing a greater than within specification current, the fuse blows. The blowing of the fuse effectively shuts off the battery, and protects it from overheating. In various embodiments, the fuse is a fusible link, or a thin metal or a material neck-down portion of the lithium or the silver vanadium oxide carrier which is unable to carry more than within specification current.
    Type: Grant
    Filed: January 30, 1997
    Date of Patent: December 1, 1998
    Inventors: Michael J. O'Phelan, Nick A. Youker, John J. Hunt