Patents by Inventor Michael J. Simoneau

Michael J. Simoneau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11896526
    Abstract: A laser eye surgery system includes a computer which scans a focused laser beam in a trajectory over a reticle or target and determines beam quality via laser light reflected from the target. The target may have a grid pattern of lines, with the diameter of the focused laser beam determined based on a time interval for the scanned beam to move onto a line of the grid pattern. Methods for measuring beam quality in a laser eye surgery system provide a direct, quantitative quality measurement of the focused laser beam, and may be performed quickly and automatically. Using scanning mirror position information together with signals resulting from laser light reflected from the target, the laser eye surgery system may also be calibrated.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: February 13, 2024
    Assignee: AMO Development, LLC
    Inventors: Noah Bareket, David A. Dewey, Michael J. Simoneau
  • Patent number: 11883329
    Abstract: A laser eye surgery system includes a laser to generate a laser beam. A topography measurement system measures corneal topography. A processor is coupled to the laser and the topography measurement system, the processor embodying instructions to measure a first corneal topography of the eye, A first curvature of the cornea is determined. A target curvature of the cornea that treats the eye is determined. A first set of incisions and a set of partial incisions in the cornea smaller than the first set of incisions are determined. The set of partial incisions is incised on the cornea by the laser beam. A second corneal topography is measured. A second curvature of the cornea is determined. The second curvature is determined to differ from the target curvature and a second set of incisions are determined. The second set of incisions is incised on the cornea.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: January 30, 2024
    Assignee: AMO Development, LLC
    Inventors: Bruce R. Woodley, Michael J. Simoneau, Raymond Woo, Javier G. Gonzalez
  • Publication number: 20210251807
    Abstract: A laser eye surgery system includes a laser to generate a laser beam. A topography measurement system measures corneal topography. A processor is coupled to the laser and the topography measurement system, the processor embodying instructions to measure a first corneal topography of the eye, A first curvature of the cornea is determined. A target curvature of the cornea that treats the eye is determined. A first set of incisions and a set of partial incisions in the cornea smaller than the first set of incisions are determined. The set of partial incisions is incised on the cornea by the laser beam. A second corneal topography is measured. A second curvature of the cornea is determined. The second curvature is determined to differ from the target curvature and a second set of incisions are determined. The second set of incisions is incised on the cornea.
    Type: Application
    Filed: May 4, 2021
    Publication date: August 19, 2021
    Inventors: Bruce R. Woodley, Michael J. Simoneau, Raymond Woo, Javier G. Gonzalez
  • Patent number: 11026841
    Abstract: A laser eye surgery system includes a laser to generate a laser beam. A topography measurement system measures corneal topography. A processor is coupled to the laser and the topography measurement system, the processor embodying instructions to measure a first corneal topography of the eye. A first curvature of the cornea is determined. A target curvature of the cornea that treats the eye is determined. A first set of incisions and a set of partial incisions in the cornea smaller than the first set of incisions are determined. The set of partial incisions is incised on the cornea by the laser beam. A second corneal topography is measured. A second curvature of the cornea is determined. The second curvature is determined to differ from the target curvature and a second set of incisions are determined. The second set of incisions is incised on the cornea.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: June 8, 2021
    Assignee: AMO Development, LLC
    Inventors: Bruce R. Woodley, Michael J. Simoneau, Raymond Woo, Javier G. Gonzalez
  • Patent number: 11000413
    Abstract: In an ophthalmic laser surgical system, a real-time optical coherence tomography (OCT) measurement method acquires OCT data during laser treatment. The treatment laser beam and OCT sample beam are generated simultaneously, and the optical delivery system scans them simultaneously in the eye tissue, where the focus of the treatment laser beam and the focus of the OCT beam coincide with each other in space. While both beams simultaneously scanned in the eye tissue, the OCT device detects returned OCT light from the sample during a data acquisition period, and generates an OCT A-scan based on the detected OCT light. Based on the A-scan, a controller determines a structure of the eye in a depth direction relative to the focus of the OCT beam, and controls the operations ophthalmic laser surgical system accordingly. One exemplary application is the formation of an arcuate corneal incision in cataract surgery.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: May 11, 2021
    Assignee: AMO Development, LLC
    Inventors: Michael J. Simoneau, David A. Dewey, Javier G. Gonzalez
  • Publication number: 20200289317
    Abstract: A laser eye surgery system includes a computer which scans a focused laser beam in a trajectory over a reticle or target and determines beam quality via laser light reflected from the target. The target may have a grid pattern of lines, with the diameter of the focused laser beam determined based on a time interval for the scanned beam to move onto a line of the grid pattern. Methods for measuring beam quality in a laser eye surgery system provide a direct, quantitative quality measurement of the focused laser beam, and may be performed quickly and automatically. Using scanning mirror position information together with signals resulting from laser light reflected from the target, the laser eye surgery system may also be calibrated.
    Type: Application
    Filed: May 27, 2020
    Publication date: September 17, 2020
    Inventors: Noah Bareket, David A. Dewey, Michael J. Simoneau
  • Publication number: 20200261267
    Abstract: In an ophthalmic laser surgical system, a real-time optical coherence tomography (OCT) measurement method acquires OCT data during laser treatment. The treatment laser beam and OCT sample beam are generated simultaneously, and the optical delivery system scans them simultaneously in the eye tissue, where the focus of the treatment laser beam and the focus of the OCT beam coincide with each other in space. While both beams simultaneously scanned in the eye tissue, the OCT device detects returned OCT light from the sample during a data acquisition period, and generates an OCT A-scan based on the detected OCT light. Based on the A-scan, a controller determines a structure of the eye in a depth direction relative to the focus of the OCT beam, and controls the operations ophthalmic laser surgical system accordingly. One exemplary application is the formation of an arcuate corneal incision in cataract surgery.
    Type: Application
    Filed: February 15, 2019
    Publication date: August 20, 2020
    Inventors: Michael J. Simoneau, David A. Dewey, Javier G. Gonzalez
  • Patent number: 10667949
    Abstract: A laser eye surgery system includes a computer which scans a focused laser beam in a trajectory over a reticle or target and determines beam quality via laser light reflected from the target. The target may have a grid pattern of lines, with the diameter of the focused laser beam determined based on a time interval for the scanned beam to move onto a line of the grid pattern. Methods for measuring beam quality in a laser eye surgery system provide a direct, quantitative quality measurement of the focused laser beam, and may be performed quickly and automatically. Using scanning mirror position information together with signals resulting from laser light reflected from the target, the laser eye surgery system may also be calibrated.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: June 2, 2020
    Assignee: AMO Development, LLC
    Inventors: Noah Bareket, David A. Dewey, Michael J. Simoneau
  • Publication number: 20190336340
    Abstract: A laser eye surgery system includes a laser to generate a laser beam. A topography measurement system measures corneal topography. A processor is coupled to the laser and the topography measurement system, the processor embodying instructions to measure a first corneal topography of the eye. A first curvature of the cornea is determined. A target curvature of the cornea that treats the eye is determined. A first set of incisions and a set of partial incisions in the cornea smaller than the first set of incisions are determined. The set of partial incisions is incised on the cornea by the laser beam. A second corneal topography is measured. A second curvature of the cornea is determined. The second curvature is determined to differ from the target curvature and a second set of incisions are determined. The second set of incisions is incised on the cornea.
    Type: Application
    Filed: June 28, 2019
    Publication date: November 7, 2019
    Inventors: Bruce R. Woodley, Michael J. Simoneau, Raymond Woo, Javier G. Gonzalez
  • Patent number: 10357399
    Abstract: A laser eye surgery system includes a laser to generate a laser beam. A topography measurement system measures corneal topography. A processor is coupled to the laser and the topography measurement system, the processor embodying instructions to measure a first corneal topography of the eye. A first curvature of the cornea is determined. A target curvature of the cornea that treats the eye is determined. A first set of incisions and a set of partial incisions in the cornea smaller than the first set of incisions are determined. The set of partial incisions is incised on the cornea by the laser beam. A second corneal topography is measured. A second curvature of the cornea is determined. The second curvature is determined to differ from the target curvature and a second set of incisions are determined. The second set of incisions is incised on the cornea.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: July 23, 2019
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Bruce R. Woodley, Michael J. Simoneau, Raymond Woo, Javier G. Gonzalez
  • Publication number: 20170112663
    Abstract: A laser eye surgery system includes a computer which scans a focused laser beam in a trajectory over a reticle or target and determines beam quality via laser light reflected from the target. The target may have a grid pattern of lines, with the diameter of the focused laser beam determined based on a time interval for the scanned beam to move onto a line of the grid pattern. Methods for measuring beam quality in a laser eye surgery system provide a direct, quantitative quality measurement of the focused laser beam, and may be performed quickly and automatically. Using scanning mirror position information together with signals resulting from laser light reflected from the target, the laser eye surgery system may also be calibrated.
    Type: Application
    Filed: October 21, 2016
    Publication date: April 27, 2017
    Inventors: Noah Bareket, David A. Dewey, Michael J. Simoneau
  • Publication number: 20160228296
    Abstract: A laser eye surgery system includes a laser to generate a laser beam. A topography measurement system measures corneal topography. A processor is coupled to the laser and the topography measurement system, the processor embodying instructions to measure a first corneal topography of the eye. A first curvature of the cornea is determined. A target curvature of the cornea that treats the eye is determined. A first set of incisions and a set of partial incisions in the cornea smaller than the first set of incisions are determined. The set of partial incisions is incised on the cornea by the laser beam. A second corneal topography is measured. A second curvature of the cornea is determined. The second curvature is determined to differ from the target curvature and a second set of incisions are determined. The second set of incisions is incised on the cornea.
    Type: Application
    Filed: December 14, 2015
    Publication date: August 11, 2016
    Inventors: Bruce R. Woodley, Michael J. Simoneau, Raymond Woo, Javier G. Gonzalez
  • Patent number: 8040582
    Abstract: A beam delivery system for treating target tissue that includes an input for receiving a light beam, a variable attenuator for providing variable attenuation of the light beam, a power and wavelength detection assembly, a spot size adjustment assembly, and a controller. The power and wavelength detection assembly measures the power level of the beam, and detects when unwanted wavelengths are present in the light beam. The spot size adjustment assembly selectively feeds the beam through different optical fibers to achieve different spot sizes of the beam. The controller controls the variable attenuator, the power and wavelength detection assembly, and the spot size adjustment assembly to achieve the desired power and wavelength, and beam spot size.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: October 18, 2011
    Assignee: Topcon Medical Laser Systems, Inc.
    Inventors: David G. Angeley, Steven S. Christensen, Michael J. Simoneau, Phillip H. Gooding
  • Publication number: 20100097682
    Abstract: A beam delivery system for treating target tissue that includes an input for receiving a light beam, a variable attenuator for providing variable attenuation of the light beam, a power and wavelength detection assembly, a spot size adjustment assembly, and a controller. The power and wavelength detection assembly measures the power level of the beam, and detects when unwanted wavelengths are present in the light beam. The spot size adjustment assembly selectively feeds the beam through different optical fibers to achieve different spot sizes of the beam. The controller controls the variable attenuator, the power and wavelength detection assembly, and the spot size adjustment assembly to achieve the desired power and wavelength, and beam spot size.
    Type: Application
    Filed: October 16, 2008
    Publication date: April 22, 2010
    Inventors: David G. Angeley, Steven S. Christensen, Michael J. Simoneau, Phillip H. Gooding
  • Patent number: 5390152
    Abstract: A forward looking echosounder uses a non-scanning forward looking transducer inclined from the horizontal at a 45.degree. angle. The forward looking transducer produces a set of acoustic data signals indicative of echo signals received along the central axis of the sonic beam as produced by the transducer. Distance and depth coordinates are used in conjunction with vessel speed and pitch angle to determine where the source of the received echo is located relative to the moving vessel. This information is then displayed in a quasi-real time display format.
    Type: Grant
    Filed: November 18, 1993
    Date of Patent: February 14, 1995
    Assignee: Airmar Technology Corporation
    Inventors: Stephen G. Boucher, Michael J. Simoneau
  • Patent number: 4815048
    Abstract: A dual axis transducer assembly comprises a transducer (20), a yoke (24) which mounts the transducer for oscillating movement about a substantially horizontal axis. A turntable (28) mounts the yoke and hence the transducer for oscillating motion about a vertical axis. Separate motors (10) and (12) supply motion to the transducer and control means (84), (86), (88) are employed to control the operation of the motors.
    Type: Grant
    Filed: August 5, 1987
    Date of Patent: March 21, 1989
    Assignee: AirmarTechnology Corporation
    Inventors: Stephen G. Boucher, Christopher S. Lins, Michael J. Simoneau