Patents by Inventor Michael J. Tierney

Michael J. Tierney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10582860
    Abstract: Medical device systems and methods for making and using medical device systems are disclosed. An example medical device system may include a guidewire. A pressure sensor assembly may be disposed within the guidewire. The pressure sensor assembly may include a pressure sensor and a first optical fiber coupled to the pressure sensor. The first optical fiber may have a first outer diameter. A cable may be coupled to the guidewire. The cable may include a second optical fiber. The second optical fiber may have a second outer diameter greater than the first outer diameter.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: March 10, 2020
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Daniel J. Gregorich, Roger W. McGowan, Michael J. Tierney
  • Publication number: 20180116735
    Abstract: Robotic surgical tools, systems, and methods for preparing for and performing robotic surgery include a memory mounted on the tool. The memory can perform a number of functions when the tool is loaded on the tool manipulator: first, the memory can provide a signal verifying that the tool is compatible with that particular robotic system. Secondly, the tool memory may identify the tool-type to the robotic system so that the robotic system can reconfigure its programming. Thirdly, the memory of the tool may indicate tool-specific information, including measured calibration offsets indicating misalignment of the tool drive system, tool life data, or the like. This information may be stored in a read only memory (ROM), or in a nonvolatile memory which can be written to only a single time. The invention further provides improved engagement structures for coupling robotic surgical tools with manipulator structures.
    Type: Application
    Filed: October 23, 2017
    Publication date: May 3, 2018
    Inventors: Michael J. Tierney, Thomas G. Cooper, Christopher A. Julian, Stephen J. Blumenkranz, Gary S. Guthart, Robert G. Younge
  • Patent number: 9795453
    Abstract: Robotic surgical tools, systems, and methods for preparing for and performing robotic surgery include a memory mounted on the tool. The memory can perform a number of functions when the tool is loaded on the tool manipulator: first, the memory can provide a signal verifying that the tool is compatible with that particular robotic system. Secondly, the tool memory may identify the tool-type to the robotic system so that the robotic system can reconfigure its programming. Thirdly, the memory of the tool may indicate tool-specific information, including measured calibration offsets indicating misalignment of the tool drive system, tool life data, or the like. This information maybe stored in a read only memory (ROM), or in a nonvolatile memory which can be written to only a single time. The invention further provides improved engagement structures for coupling robotic surgical tools with manipulator structures.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: October 24, 2017
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Michael J. Tierney, Thomas Cooper, Chris Julian, Stephen J. Blumenkranz, Gary S. Guthart, Robert G. Younge
  • Patent number: 8914150
    Abstract: Improved robotic surgical systems, devices, and methods include selectably associatable master/slave pairs, often having more manipulator arms than will be moved simultaneously by the two hands of a surgeon. Four manipulator arms can support an image capture device, a left hand tissue manipulation tool, a right hand tissue manipulation tool, and a fourth surgical instrument, particularly for stabilizing, retracting, tool change, or other functions benefiting from intermittent movement. The four or more arms may sequentially be controlled by left and right master input control devices. The fourth arm may be used to support another image capture device, and control of some or all of the arms may be transferred back-and-forth between the operator and an assistant. Two or more robotic systems each having master controls and slave manipulators may be coupled to enable cooperative surgery between two or more operators.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: December 16, 2014
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Frederic H. Moll, David J. Rosa, Andris D. Ramans, Steven J. Blumenkranz, Gary S. Guthart, Gunter D. Niemeyer, William C. Nowlin, J. Kenneth Salisbury, Jr., Michael J. Tierney
  • Publication number: 20140195048
    Abstract: Improved robotic surgical systems, devices, and methods include selectably associatable master/slave pairs, often having more manipulator arms than will be moved simultaneously by the two hands of a surgeon. Four manipulator arms can support an image capture device, a left hand tissue manipulation tool, a right hand tissue manipulation tool, and a fourth surgical instrument, particularly for stabilizing, retracting, tool change, or other functions benefiting from intermittent movement. The four or more arms may sequentially be controlled by left and right master input control devices. The fourth arm may be used to support another image capture device, and control of some or all of the arms may be transferred back-and-forth between the operator and an assistant. Two or more robotic systems each having master controls and slave manipulators may be coupled to enable cooperative surgery between two or more operators.
    Type: Application
    Filed: January 24, 2014
    Publication date: July 10, 2014
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Frederic H. Moll, David J. Rosa, Andris D. Ramans, Steven J. Blumenkranz, Gary S. Guthart, Gunter D. Niemeyer, William C. Nowlin, J. Kenneth Salisbury, JR., Michael J. Tierney
  • Patent number: 8666544
    Abstract: Improved robotic surgical systems, devices, and methods include selectably associatable master/slave pairs, often having more manipulator arms than will be moved simultaneously by the two hands of a surgeon. Four manipulator arms can support an image capture device, a left hand tissue manipulation tool, a right hand tissue manipulation tool, and a fourth surgical instrument, particularly for stabilizing, retracting, tool change, or other functions benefiting from intermittent movement. The four or more arms may sequentially be controlled by left and right master input control devices. The fourth arm may be used to support another image capture device, and control of some or all of the arms may be transferred back-and-forth between the operator and an assistant. Two or more robotic systems each having master controls and slave manipulators may be coupled to enable cooperative surgery between two or more operators.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: March 4, 2014
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Frederic H. Moll, David J. Rosa, Andris D. Ramans, Steven J. Blumenkranz, Gary S. Guthart, Gunter D. Niemeyer, William C. Nowlin, J. Kenneth Salisbury, Jr., Michael J. Tierney
  • Publication number: 20140058275
    Abstract: Medical device systems and methods for making and using medical device systems are disclosed. An example medical device system may include a guidewire. A pressure sensor assembly may be disposed within the guidewire. The pressure sensor assembly may include a pressure sensor and a first optical fiber coupled to the pressure sensor. The first optical fiber may have a first outer diameter. A cable may be coupled to the guidewire. The cable may include a second optical fiber. The second optical fiber may have a second outer diameter greater than the first outer diameter.
    Type: Application
    Filed: August 27, 2013
    Publication date: February 27, 2014
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: DANIEL J. GREGORICH, ROGER W. MCGOWAN, MICHAEL J. TIERNEY
  • Patent number: 8608773
    Abstract: Robotic surgical tools, systems, and methods for preparing for and performing robotic surgery include a memory mounted on the tool. The memory can perform a number of functions when the tool is loaded on the tool manipulator: first, the memory can provide a signal verifying that the tool is compatible with that particular robotic system. Secondly, the tool memory may identify the tool-type to the robotic system so that the robotic system can reconfigure its programming. Thirdly, the memory of the tool may indicate tool-specific information, including measured calibration offsets indicating misalignment of the tool drive system, tool life data, or the like. This information may be stored in a read only memory (ROM), or in a nonvolatile memory which can be written to only a single time. The invention further provides improved engagement structures for coupling robotic surgical tools with manipulator structures.
    Type: Grant
    Filed: September 18, 2006
    Date of Patent: December 17, 2013
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Michael J. Tierney, Thomas Cooper, Chris Julian, Stephen J. Blumenkranz, Gary S. Guthart, Robert G. Younge
  • Publication number: 20130304256
    Abstract: Improved robotic surgical systems, devices, and methods include selectably associatable master/slave pairs, often having more manipulator arms than will be moved simultaneously by the two hands of a surgeon. Four manipulator arms can support an image capture device, a left hand tissue manipulation tool, a right hand tissue manipulation tool, and a fourth surgical instrument, particularly for stabilizing, retracting, tool change, or other functions benefiting from intermittent movement. The four or more arms may sequentially be controlled by left and right master input control devices. The fourth arm may be used to support another image capture device, and control of some or all of the arms may be transferred back-and-forth between the operator and an assistant. Two or more robotic systems each having master controls and slave manipulators may be coupled to enable cooperative surgery between two or more operators.
    Type: Application
    Filed: July 10, 2013
    Publication date: November 14, 2013
    Inventors: Frederic H. MOLL, David J. Rosa, Andris D. Ramans, Steven J. Blumenkranz, Gary S. Guthart, Gunter D. Niemeyer, William C. Nowlin, J. Kenneth Salisbury, JR., Michael J. Tierney
  • Patent number: 8504201
    Abstract: Improved robotic surgical systems, devices, and methods include selectably associatable master/slave pairs, often having more manipulator arms than will be moved simultaneously by the two hands of a surgeon. Four manipulator arms can support an image capture device, a left hand tissue manipulation tool, a right hand tissue manipulation tool, and a fourth surgical instrument, particularly for stabilizing, retracting, tool change, or other functions benefiting from intermittent movement. The four or more arms may sequentially be controlled by left and right master input control devices. The fourth arm may be used to support another image capture device, and control of some or all of the arms may be transferred back-and-forth between the operator and an assistant. Two or more robotic systems each having master controls and slave manipulators may be coupled to enable cooperative surgery between two or more operators.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: August 6, 2013
    Assignee: Intuitive Sugrical Operations, Inc.
    Inventors: Frederic H. Moll, David J. Rosa, Andris D. Ramans, Steven J. Blumenkranz, Gary S. Guthart, Gunter D. Niemeyer, William C. Nowlin, J. Kenneth Salisbury, Jr., Michael J. Tierney
  • Patent number: 8489235
    Abstract: Improved robotic surgical systems, devices, and methods include selectably associatable master/slave pairs, often having more manipulator arms than will be moved simultaneously by the two hands of a surgeon. Four manipulator arms can support an image capture device, a left hand tissue manipulation tool, a right hand tissue manipulation tool, and a fourth surgical instrument, particularly for stabilizing, retracting, tool change, or other functions benefiting from intermittent movement. The four or more arms may sequentially be controlled by left and right master input control devices. The fourth arm may be used to support another image capture device, and control of some or all of the arms may be transferred back-and-forth between the operator and an assistant. Two or more robotic systems each having master controls and slave manipulators may be coupled to enable cooperative surgery between two or more operators.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: July 16, 2013
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Frederic H. Moll, David J. Rosa, Andris D. Ramans, Steven J. Blumenkranz, Gary S. Guthart, Gunter D. Niemeyer, William C. Nowlin, J. Kenneth Salisbury, Jr., Michael J. Tierney
  • Publication number: 20120172693
    Abstract: A method of monitoring an analyte (such as, e.g., glucose) including the following steps: diffusing the analyte from a sampling location into a sensing fluid within a sensing chamber; detecting a concentration of the analyte in the sensing fluid; moving flushing fluid into the sensing chamber and simultaneously removing sensing fluid from the sensing chamber; permitting the flushing fluid to remain in the sensing chamber without flowing for a dwell time; removing the flushing fluid from the sensing chamber after the dwell time expires; and, after removing the flushing fluid from the sensing chamber, moving sensing fluid into the sensing chamber. The invention also includes an analyte monitoring device performing this method.
    Type: Application
    Filed: January 5, 2011
    Publication date: July 5, 2012
    Inventors: Varun Boriah, Janet Tamada, Arvind N. Jina, Michael J. Tierney, Shashi P. Desai
  • Publication number: 20120172692
    Abstract: An analyte monitor having a plurality of fluid paths, each fluid path having a distal opening adapted to be disposed on one side of a stratum corneum layer of a user's skin, a proximal opening adapted to be disposed on another side of the stratum corneum layer and an interior space extending between the distal and proximal openings; a sensing zone in fluid communication with the proximal openings of the fluid paths; sensing fluid extending from the sensing zone into substantially the entire interior space of the fluid paths; and an analyte sensor adapted to detect a concentration of analyte in the sensing fluid within the sensing zone, wherein at least one of the sensing fluid and the analyte sensor comprises a catalyst for mutarotation of glucose. The invention also includes a method of using the monitor.
    Type: Application
    Filed: January 5, 2011
    Publication date: July 5, 2012
    Inventors: Janet Tamada, Michael J. Tierney, Ramakrishna Madabhushi, Arvind N. Jina
  • Publication number: 20120130399
    Abstract: Improved robotic surgical systems, devices, and methods include selectably associatable master/slave pairs, often having more manipulator arms than will be moved simultaneously by the two hands of a surgeon. Four manipulator arms can support an image capture device, a left hand tissue manipulation tool, a right hand tissue manipulation tool, and a fourth surgical instrument, particularly for stabilizing, retracting, tool change, or other functions benefiting from intermittent movement. The four or more arms may sequentially be controlled by left and right master input control devices. The fourth arm may be used to support another image capture device, and control of some or all of the arms may be transferred back-and-forth between the operator and an assistant. Two or more robotic systems each having master controls and slave manipulators may be coupled to enable cooperative surgery between two or more operators.
    Type: Application
    Filed: November 18, 2011
    Publication date: May 24, 2012
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Frederic H. Moll, David J. Rosa, Andris D. Ramans, Steven J. Blumenkranz, Gary S. Guthart, Gunter D. Niemeyer, William C. Nowlin, J. Kenneth Salisbury, JR., Michael J. Tierney
  • Publication number: 20110137322
    Abstract: Improved robotic surgical systems, devices, and methods include selectably associatable master/slave pairs, often having more manipulator arms than will be moved simultaneously by the two hands of a surgeon. Four manipulator arms can support an image capture device, a left hand tissue manipulation tool, a right hand tissue manipulation tool, and a fourth surgical instrument, particularly for stabilizing, retracting, tool change, or other functions benefiting from intermittent movement. The four or more arms may sequentially be controlled by left and right master input control devices. The fourth arm may be used to support another image capture device, and control of some or all of the arms may be transferred back-and-forth between the operator and an assistant. Two or more robotic systems each having master controls and slave manipulators may be coupled to enable cooperative surgery between two or more operators.
    Type: Application
    Filed: December 3, 2010
    Publication date: June 9, 2011
    Applicant: Intuitive Surgical Operations
    Inventors: Frederic H. Moll, David J. Rosa, Andris D. Ramans, Steven J. Blumenkranz, Gary S. Guthart, Gunter D. Niemeyer, William C. Nowlin, J. Kenneth Salisbury, JR., Michael J. Tierney
  • Patent number: 7873399
    Abstract: Methods and devices are provided for measuring the concentration of target chemical analytes present in a biological system. Device configuration and/or measurement techniques are employed in order to reduce the effect of interfering species on sensor sensitivity. One important application of the invention involves a method and device for monitoring blood glucose values.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: January 18, 2011
    Assignee: Animas Corporation
    Inventors: Bret Berner, Chia-Ming Chiang, Michael D. Garrison, Janan Jona, Russell O. Potts, Janet A. Tamada, Michael J. Tierney
  • Patent number: 7865266
    Abstract: Improved robotic surgical systems, devices, and methods include selectably associatable master/slave pairs, often having more manipulator arms than will be moved simultaneously by the two hands of a surgeon. Four manipulator arms can support an image capture device, a left hand tissue manipulation tool, a right hand tissue manipulation tool, and a fourth surgical instrument, particularly for stabilizing, retracting, tool change, or other functions benefiting from intermittent movement. The four or more arms may sequentially be controlled by left and right master input control devices. The fourth arm may be used to support another image capture device, and control of some or all of the arms may be transferred back-and-forth between the operator and an assistant. Two or more robotic systems each having master controls and slave manipulators may be coupled to enable cooperative surgery between two or more operators.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: January 4, 2011
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Frederic H. Moll, David J. Rosa, Andris D. Ramans, Steven J. Blumenkranz, Gary S. Guthart, Gunter D. Niemeyer, William C. Nowlin, J. Kenneth Salisbury, Jr., Michael J. Tierney
  • Publication number: 20100305442
    Abstract: A method of managing catheter data for a catheter-based imaging system includes coupling a catheter to a control module. The catheter includes a memory structure that includes catheter management data. The control module includes a processor. The catheter management data is accessed from the memory structure using the processor. Patient tissue is imaged using control module settings that are selected based, at least in part, on the accessed catheter management data. At least one image is displayed based, at least in part, on the imaged patient tissue.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 2, 2010
    Applicant: Boston Scientific SciMed, Inc.
    Inventors: Michael J. Tierney, Lauretta A. Iwamasa, Joel R. Brey
  • Patent number: 7731867
    Abstract: The invention is directed to conductive polymer compositions, catalytic ink compositions (e.g., for use in screen-printing), electrodes produced by deposition of an ink composition, as well as methods of making, and methods of using such compositions and electrodes. An exemplary ink material comprises a metal catalyst (e.g., platinum black and/or platinum-on-carbon), graphite as a conducting material, a polymer binding material, and an organic solvent. In one aspect, the polymer binding material comprises a polymer binder blend comprising first and second polymers, wherein the first polymer has a glass transition temperature higher than the second polymer. In a second aspect, the polymer binding material comprises a hydrophilic acrylic polymer, copolymer, or terpolymer. The conductive polymer compositions of the present invention may be used, for example, to make electrochemical sensors. Such sensors may be used, for example, in a variety of devices to monitor analyte amount or concentrations in subjects.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: June 8, 2010
    Assignee: Animas Technologies, LLC
    Inventors: Huawen Li, Michael J. Tierney
  • Publication number: 20100049022
    Abstract: The present invention relates to a predictive-kinetic method for use with data processing of a sensor-generated signal, as well as, microprocessors and monitoring systems employing such a predictive-kinetic method. Data from a transient region of a signal is used with suitable models and curve-fitting methods to predict the signal that would be measured for the system at the completion of the reaction. The values resulting from data processing of sensor response using the methods of the present invention are less sensitive to measurement variables.
    Type: Application
    Filed: October 19, 2009
    Publication date: February 25, 2010
    Applicant: Animas Technologies, LLC.
    Inventors: Norman A. Parris, Russell O. Potts, Michael J. Tierney, Christopher Uhegbu