Patents by Inventor Michael James Rizzo

Michael James Rizzo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230003192
    Abstract: A method for preventing a pitch bearing failure of a pitch system of a wind turbine includes monitoring, via at least one sensor, one or more electrical signals of a pitch motor of a pitch drive mechanism of the pitch system that drives a pitch bearing of the pitch system. The method also includes analyzing, via the controller, the one or more electrical signals of the pitch motor so as to remove noise and amplify outliers. Moreover, the method includes estimating bearing friction of the pitch bearing using the analyzed one or more electrical signals of the pitch motor. As such, the method includes implementing, via the controller, a control action when the estimated bearing friction of the pitch bearing indicates an anomaly in the pitch bearing.
    Type: Application
    Filed: October 30, 2019
    Publication date: January 5, 2023
    Inventors: Ameet Shridhar Deshpande, John Joseph Mihok, Ashley Simone Wilford, Michael James Rizzo, Santiago Murcia
  • Publication number: 20220364549
    Abstract: A method for operating and maintaining a wind farm comprising a plurality of wind turbines includes determining an odometer for one or more components of at least one of the pluralities of wind turbines in the wind farm, the odometer representing operational usage of the component(s). The method also includes tracking the operational usage for the component(s) using the odometer and a usage threshold. Further, the method includes predicting an expected time frame for one or more preventative maintenance actions based on a comparison of the tracked operational usage and the usage threshold. Moreover, the method includes triggering scheduling of the one or more preventative maintenance actions when the prediction indicates that the tracked operational usage will exceed the usage threshold. In addition, the method includes shutting down the wind turbine or idling the wind turbine once the one or more preventative maintenance actions are scheduled.
    Type: Application
    Filed: October 11, 2019
    Publication date: November 17, 2022
    Inventors: Edward Lee McGrath, Brian J. Theilemann, Michael James Rizzo, Robert Randall Waara, Brian Scott Geist, Kyle Edward Thompson
  • Patent number: 11476685
    Abstract: A method for detecting a fault in a direct current (DC) battery of a pitch system includes receiving, via a server, a plurality of voltage signals of the battery over at least one time period. The method also includes storing, via a database of the server, the plurality of voltage signals of the battery for the predetermined time period. Further, the method includes determining, via the server, a state of the battery as a function of the plurality of voltage signals. When the state of the battery is indicative of a battery fault, the method includes implementing a corrective action for the battery.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: October 18, 2022
    Assignee: General Electric Company
    Inventors: Christopher Albert Jordan, Michael James Rizzo, John Joseph Mihok, Frank William Ripple, Jr., Kyle Raymond Barden
  • Patent number: 11460006
    Abstract: A method for detecting damage in a bearing coupled to a rotating shaft of a rotary machine includes receiving one or more measurement signals from one or more first sensors for monitoring movement of the rotating shaft in one or more directions over a time period. The method also includes removing an effect of one or more environmental and/or operating conditions of the rotary machine from the one or more measurement signals over the time period. After removing, the method includes analyzing changes in the one or more measurement signals from the one or more first sensors, wherein changes in the one or more measurement signals above a predetermined threshold or of a certain magnitude are indicative of a damaged bearing. Moreover, the method includes implementing a corrective action when the changes in the one or more measurement signals are above the predetermined threshold.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: October 4, 2022
    Assignee: General Electric Company
    Inventors: Inderdeep Kaur, Frederick Wilson Wheeler, Michael James Rizzo, John Joseph Mihok
  • Publication number: 20210075232
    Abstract: A method for detecting a fault in a direct current (DC) battery of a pitch system includes receiving, via a server, a plurality of voltage signals of the battery over at least one time period. The method also includes storing, via a database of the server, the plurality of voltage signals of the battery for the predetermined time period. Further, the method includes determining, via the server, a state of the battery as a function of the plurality of voltage signals. When the state of the battery is indicative of a battery fault, the method includes implementing a corrective action for the battery.
    Type: Application
    Filed: September 9, 2019
    Publication date: March 11, 2021
    Inventors: Christopher Albert Jordan, Michael James Rizzo, John Joseph Mihok, Frank William Ripple, JR., Kyle Raymond Barden
  • Publication number: 20210033074
    Abstract: A method for detecting damage in a bearing coupled to a rotating shaft of a rotary machine includes receiving one or more measurement signals from one or more first sensors for monitoring movement of the rotating shaft in one or more directions over a time period. The method also includes removing an effect of one or more environmental and/or operating conditions of the rotary machine from the one or more measurement signals over the time period. After removing, the method includes analyzing changes in the one or more measurement signals from the one or more first sensors, wherein changes in the one or more measurement signals above a predetermined threshold or of a certain magnitude are indicative of a damaged bearing. Moreover, the method includes implementing a corrective action when the changes in the one or more measurement signals are above the predetermined threshold.
    Type: Application
    Filed: July 28, 2020
    Publication date: February 4, 2021
    Inventors: Inderdeep Kaur, Frederick Wilson Wheeler, Michael James Rizzo, John Joseph Mihok
  • Patent number: 10876518
    Abstract: A method for mitigating damage in a rotor blade of a plurality of rotor blades of a wind turbine includes receiving a plurality of acceleration signals from the plurality of the rotor blades in at least one direction. The method also includes generating a spectral density for each of the plurality of acceleration signals. Further, the method includes determining blade energies for each of the plurality of rotor blades based on the spectral densities for each of the plurality of acceleration signals for at least one predetermined frequency range. Moreover, the method includes comparing the blade energies to at least one of each other or a predetermined damage threshold. In addition, the method includes implementing a control action when one or more of the blade energies vary from each other by a predetermined amount or one or more of the blade energies exceed the predetermined damage threshold.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: December 29, 2020
    Assignee: General Electric Company
    Inventors: Michael James Rizzo, John Joseph Mihok
  • Patent number: 10823146
    Abstract: A method for monitoring and controlling a wind turbine to minimize rotor blade damage includes receiving sensor data from one or more sensors indicative of at least one blade parameter of the rotor blade over a predetermined time period. The method also includes trending the sensor data for the predetermined time period with respect to at least one wind parameter. Further, the method includes determining at least one characteristic of the trended sensor data. Moreover, the method includes comparing the at least one characteristic of the trended sensor data to an operating threshold. In addition, the method includes implementing a control action if the comparison of the at least one characteristic of the trended sensor data and the operating threshold indicates blade damage is occurring or is likely to occur.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: November 3, 2020
    Assignee: General Electric Company
    Inventors: Clovis Dillon Vaughn, Robert Peter Slack, Michael James Rizzo
  • Publication number: 20200325875
    Abstract: A method for mitigating damage in a rotor blade of a plurality of rotor blades of a wind turbine includes receiving a plurality of acceleration signals from the plurality of the rotor blades in at least one direction. The method also includes generating a spectral density for each of the plurality of acceleration signals. Further, the method includes determining blade energies for each of the plurality of rotor blades based on the spectral densities for each of the plurality of acceleration signals for at least one predetermined frequency range. Moreover, the method includes comparing the blade energies to at least one of each other or a predetermined damage threshold. In addition, the method includes implementing a control action when one or more of the blade energies vary from each other by a predetermined amount or one or more of the blade energies exceed the predetermined damage threshold.
    Type: Application
    Filed: April 12, 2019
    Publication date: October 15, 2020
    Inventors: Michael James Rizzo, John Joseph Mihok
  • Publication number: 20190383266
    Abstract: A method for monitoring and controlling a wind turbine to minimize rotor blade damage includes receiving sensor data from one or more sensors indicative of at least one blade parameter of the rotor blade over a predetermined time period. The method also includes trending the sensor data for the predetermined time period with respect to at least one wind parameter. Further, the method includes determining at least one characteristic of the trended sensor data. Moreover, the method includes comparing the at least one characteristic of the trended sensor data to an operating threshold. In addition, the method includes implementing a control action if the comparison of the at least one characteristic of the trended sensor data and the operating threshold indicates blade damage is occurring or is likely to occur.
    Type: Application
    Filed: June 14, 2018
    Publication date: December 19, 2019
    Inventors: Clovis Dillon Vaughn, Robert Peter Slack, Michael James Rizzo