Patents by Inventor Michael John Eng

Michael John Eng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9220529
    Abstract: An atherectomy device is disclosed, which is rotationally driven by an electric motor. In some designs, the device includes features unavailable on gas turbine-driven systems, such as the storing in memory of low/medium/high preset rotation speeds for particular models of handle, calculations of the amount of saline left in the IV and associated warnings when it gets sufficiently low, and automatic adjustment of the IV pump rate to a predetermined or calculated level when the rotational speed of the motor is changed. The electric motor has far more rotational inertia than a comparable gas turbine, so the system includes a control mechanism that helps prevent damage from excessive torque being applied to the distal end of the drive shaft. When an obstruction at the distal end is detected, by a drop in the motor rotational speed, the motor is released and is allowed to spin freely as a flywheel.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: December 29, 2015
    Assignee: Cardiovascular Systems, Inc.
    Inventors: Jody Lee Rivers, Charles A. Plowe, Cassandra Ann Piippo Svendsen, Walter John Dobrovolny, Michael John Eng, Scott M. Hanson
  • Patent number: 9119661
    Abstract: An atherectomy device is disclosed, which is rotationally driven by an electric motor. In some designs, the device includes features unavailable on gas turbine-driven systems, such as the storing in memory of low/medium/high preset rotation speeds for particular models of handle, calculations of the amount of saline left in the IV and associated warnings when it gets sufficiently low, and automatic adjustment of the IV pump rate to a predetermined or calculated level when the rotational speed of the motor is changed. The electric motor has far more rotational inertia than a comparable gas turbine, so the system includes a control mechanism that helps prevent damage from excessive torque being applied to the distal end of the drive shaft. When an obstruction at the distal end is detected, by a drop in the motor rotational speed, the motor is released and is allowed to spin freely as a flywheel.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: September 1, 2015
    Assignee: Cardiovascular Systems, Inc.
    Inventors: Jody Lee Rivers, Charles A. Plowe, Cassandra Ann Piippo Svendsen, Walter John Dobrovolny, Michael John Eng, Scott M. Hanson
  • Patent number: 9119660
    Abstract: An atherectomy device is disclosed, which is rotationally driven by an electric motor. In some designs, the device includes features unavailable on gas turbine-driven systems, such as the storing in memory of low/medium/high preset rotation speeds for particular models of handle, calculations of the amount of saline left in the IV and associated warnings when it gets sufficiently low, and automatic adjustment of the IV pump rate to a predetermined or calculated level when the rotational speed of the motor is changed. The electric motor has far more rotational inertia than a comparable gas turbine, so the system includes a control mechanism that helps prevent damage from excessive torque being applied to the distal end of the drive shaft. When an obstruction at the distal end is detected, by a drop in the motor rotational speed, the motor is released and is allowed to spin freely as a flywheel.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: September 1, 2015
    Assignee: Cardiovascular Systems, Inc.
    Inventors: Jody Lee Rivers, Charles A. Plowe, Cassandra Ann Piippo Svendsen, Walter John Dobrovolny, Michael John Eng, Scott M. Hanson
  • Patent number: 9050126
    Abstract: An atherectomy device is disclosed, which is rotationally driven by an electric motor. In some designs, the device includes features unavailable on gas turbine-driven systems, such as the storing in memory of low/medium/high preset rotation speeds for particular models of handle, calculations of the amount of saline left in the IV and associated warnings when it gets sufficiently low, and automatic adjustment of the IV pump rate to a predetermined or calculated level when the rotational speed of the motor is changed. The electric motor has far more rotational inertia than a comparable gas turbine, so the system includes a control mechanism that helps prevent damage from excessive torque being applied to the distal end of the drive shaft. When an obstruction at the distal end is detected, by a drop in the motor rotational speed, the motor is released and is allowed to spin freely as a flywheel.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: June 9, 2015
    Assignee: Cardiovascular Systems, Inc.
    Inventors: Jody Lee Rivers, Charles A. Plowe, Cassandra Ann Piippo Svendsen, Walter John Dobrovolny, Michael John Eng, Scott M. Hanson
  • Publication number: 20150051626
    Abstract: An atherectomy device is disclosed, which is rotationally driven by an electric motor. In some designs, the device includes features unavailable on gas turbine-driven systems, such as the storing in memory of low/medium/high preset rotation speeds for particular models of handle, calculations of the amount of saline left in the IV and associated warnings when it gets sufficiently low, and automatic adjustment of the IV pump rate to a predetermined or calculated level when the rotational speed of the motor is changed. The electric motor has far more rotational inertia than a comparable gas turbine, so the system includes a control mechanism that helps prevent damage from excessive torque being applied to the distal end of the drive shaft. When an obstruction at the distal end is detected, by a drop in the motor rotational speed, the motor is released and is allowed to spin freely as a flywheel.
    Type: Application
    Filed: October 30, 2014
    Publication date: February 19, 2015
    Inventors: Jody Lee Rivers, Charles A. Plowe, Cassandra Ann Piippo Svendsen, Walter John Dobrovolny, Michael John Eng, Scott M. Hanson
  • Publication number: 20130023913
    Abstract: An atherectomy device is disclosed, which is rotationally driven by an electric motor. In some designs, the device includes features unavailable on gas turbine-driven systems, such as the storing in memory of low/medium/high preset rotation speeds for particular models of handle, calculations of the amount of saline left in the IV and associated warnings when it gets sufficiently low, and automatic adjustment of the IV pump rate to a predetermined or calculated level when the rotational speed of the motor is changed. The electric motor has far more rotational inertia than a comparable gas turbine, so the system includes a control mechanism that helps prevent damage from excessive torque being applied to the distal end of the drive shaft. When an obstruction at the distal end is detected, by a drop in the motor rotational speed, the motor is released and is allowed to spin freely as a flywheel.
    Type: Application
    Filed: September 21, 2012
    Publication date: January 24, 2013
    Applicant: CARDIOVASCULAR SYSTEMS, INC.
    Inventors: Jody Lee Rivers, Charles A. Plowe, Cassandra Ann Piippo Svendsen, Walter John Dobrovolny, Michael John Eng, Scott M. Hanson
  • Publication number: 20130018399
    Abstract: An atherectomy device is disclosed, which is rotationally driven by an electric motor. In some designs, the device includes features unavailable on gas turbine-driven systems, such as the storing in memory of low/medium/high preset rotation speeds for particular models of handle, calculations of the amount of saline left in the IV and associated warnings when it gets sufficiently low, and automatic adjustment of the IV pump rate to a predetermined or calculated level when the rotational speed of the motor is changed. The electric motor has far more rotational inertia than a comparable gas turbine, so the system includes a control mechanism that helps prevent damage from excessive torque being applied to the distal end of the drive shaft. When an obstruction at the distal end is detected, by a drop in the motor rotational speed, the motor is released and is allowed to spin freely as a flywheel.
    Type: Application
    Filed: September 21, 2012
    Publication date: January 17, 2013
    Applicant: CARDIOVASCULAR SYSTEMS, INC.
    Inventors: Jody Lee Rivers, Charles A. Plowe, Cassandra Ann Piippo Svendsen, Walter John Dobrovolny, Michael John Eng, Scott M. Hanson
  • Publication number: 20130018398
    Abstract: An atherectomy device is disclosed, which is rotationally driven by an electric motor. In some designs, the device includes features unavailable on gas turbine-driven systems, such as the storing in memory of low/medium/high preset rotation speeds for particular models of handle, calculations of the amount of saline left in the IV and associated warnings when it gets sufficiently low, and automatic adjustment of the IV pump rate to a predetermined or calculated level when the rotational speed of the motor is changed. The electric motor has far more rotational inertia than a comparable gas turbine, so the system includes a control mechanism that helps prevent damage from excessive torque being applied to the distal end of the drive shaft. When an obstruction at the distal end is detected, by a drop in the motor rotational speed, the motor is released and is allowed to spin freely as a flywheel.
    Type: Application
    Filed: September 21, 2012
    Publication date: January 17, 2013
    Applicant: CARDIOVASCULAR SYSTEMS, INC.
    Inventors: Jody Lee Rivers, Charles A. Plowe, Cassandra Ann Piippo Svendsen, Walter John Dobrovolny, Michael John Eng, Scott M. Hanson
  • Publication number: 20110213391
    Abstract: An atherectomy device is disclosed, which is rotationally driven by an electric motor. In some designs, the device includes features unavailable on gas turbine-driven systems, such as the storing in memory of low/medium/high preset rotation speeds for particular models of handle, calculations of the amount of saline left in the IV and associated warnings when it gets sufficiently low, and automatic adjustment of the IV pump rate to a predetermined or calculated level when the rotational speed of the motor is changed. The electric motor has far more rotational inertia than a comparable gas turbine, so the system includes a control mechanism that helps prevent damage from excessive torque being applied to the distal end of the drive shaft. When an obstruction at the distal end is detected, by a drop in the motor rotational speed, the motor is released and is allowed to spin freely as a flywheel.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 1, 2011
    Applicant: CARDIOVASCULAR SYSTEMS, INC.
    Inventors: Jody Lee Rivers, Charles A. Plowe, Cassandra Ann Piippo Svendsen, Walter John Dobrovolny, Michael John Eng, Scott M. Hanson