Patents by Inventor Michael K. Poindexter

Michael K. Poindexter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230242432
    Abstract: Embodiments relate to a continuous process for treating tailings that includes providing tailings for treatment having at least 10 wt % solids, providing a mixing apparatus having a first inlet for feeding the tailings, a second inlet for feeding a non-dispersion liquid flocculant that includes a polyethylene glycol having a weight average molecular weight from 100 g/mol to 2,000 g/mol, and an outlet for a mixture of the tailings and the non-dispersion liquid flocculant, continuously introducing into the mixing apparatus the tailings through the first inlet and the non-dispersion liquid flocculant through the second inlet, and allowing the tailings and the non-dispersion liquid flocculant to mix to from the mixture of the tailings and the non-dispersion liquid flocculant.
    Type: Application
    Filed: July 8, 2021
    Publication date: August 3, 2023
    Inventors: Lizbeth Rostro, Wu Chen, Paul A. Gillis, Michael K. Poindexter
  • Publication number: 20220081332
    Abstract: Embodiments relate continuous process for treating tailings that includes providing tailings for treatment having at least 20 wt % solids, providing a mixing apparatus having a first inlet for feeding the tailings, a second inlet for feeding flocculants, an outlet for a mixture of the tailings and flocculants, and a rotating disk, the first inlet being separate from the second inlet, the second inlet being above the rotating disk, and the rotating disk having a tip speed at least 2 m/s, continuously introducing into the mixing apparatus the tailings through the first inlet and the flocculants through the second inlet, allowing the tailings and the flocculants to mix on the rotating disk to form the mixture of the tailings and flocculants, continuously removing the mixture of the tailings and flocculants through the outlet to form a treated mixture, and flowing the treated mixture from the mixing apparatus for further treatment or to a disposal area.
    Type: Application
    Filed: January 25, 2020
    Publication date: March 17, 2022
    Inventors: Lizbeth Rostro, Wu Chen, Paul A. Gillis, Michael K. Poindexter
  • Publication number: 20210371316
    Abstract: The present invention relates to an in-line blending apparatus and use therein for flocculating and dewatering an aqueous mineral suspension. Said method comprises blending an aqueous mineral suspension and a poly(ethylene oxide) (co)polymer using a progressive cavity pump. Said method is particularly useful for the treatment of suspensions of particulate material, especially waste mineral slurries, especially for the treatment of tailings and other waste material resulting from mineral processing, in particular, the processing of oil sands tailings.
    Type: Application
    Filed: September 14, 2017
    Publication date: December 2, 2021
    Inventors: Paul A. Gillis, Jason S. Moore, Michael K. Poindexter, Jason A. Tubbs
  • Publication number: 20210278390
    Abstract: The present invention relates to a method for determining the clay content of an oil sands tailings stream. The method comprises treating an oil sands tailings stream with a PEO flocculant, passing the mixture through a dynamic mixer comprising a mixer shaft and a power drive for rotating said shaft, wherein the power input needed to maintain a mixer rotational speed (RPM) is measured. For an oil sands tailings stream having a specified solids content, the power measurement and PEO dosage level is correlated to a clay content characterization index, for example methylene blue index (MBI), to determine in real-time the clay content during the processing of an oil sands tailings stream.
    Type: Application
    Filed: October 4, 2017
    Publication date: September 9, 2021
    Inventors: Paul A. Gillis, Jason S. Moore, Michael K. Poindexter
  • Patent number: 11001512
    Abstract: The present invention relates to a method of dewatering an aqueous mineral suspension comprising introducing into the suspension a flocculating system comprising a poly(ethylene oxide) copolymer, in particular a copolymer of ethylene oxide and one or more epoxy or glycidyl ether functionalized hydrophobic monomer. Said poly(ethylene oxide) copolymers are useful for the treatment of suspensions of particulate material, especially waste mineral slurries. The invention is particularly suitable for the treatment of tailings and other waste material resulting from mineral processing, in particular, the processing of oil sands tailings.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: May 11, 2021
    Assignee: Dow Global Technologies LLC
    Inventors: Cole A. Witham, Matthew J. Hansen, James E. Hitt, Carol E. Mohler, Michael K. Poindexter
  • Patent number: 11001514
    Abstract: The present invention relates to a method of dewatering an aqueous mineral suspension comprising introducing into the suspension a flocculating system comprising a mixture of polyethylene oxide polymers, in particular a mixture of one or more high molecular weight polyethylene oxide polymer and one or more ultra high molecular weight polyethylene oxide polymer. Said mixture of polyethylene oxide polymers is useful for the treatment of suspensions of particulate material, especially waste mineral slurries. The invention is particularly suitable for the treatment of tailings and other waste material resulting from mineral processing, in particular, the processing of oil sands tailings.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: May 11, 2021
    Assignee: Dow Global Technologies LLC
    Inventors: Cole A. Witham, Paul A. Gillis, Michael K. Poindexter, Jason S. Moore
  • Publication number: 20200318013
    Abstract: The present invention relates to a method for transporting, flocculating, and dewatering an aqueous tailings stream. Said method comprises adding a flocculant composition comprising a poly(ethylene oxide) (co)polymer with the aqueous tailings stream wherein the aqueous tailings stream has 15 wt % or less solids. Said method is particularly useful for the treatment of suspensions of particulate material, especially waste mineral slurries, especially for the treatment of tailings and other waste material resulting from mineral processing, in particular, the processing of oil sands tailings.
    Type: Application
    Filed: October 12, 2018
    Publication date: October 8, 2020
    Applicant: Dow Global Technologies LLC
    Inventors: Lizbeth Rostro, Wu Chen, Paul A. Gillis, Michael K. Poindexter, Jason A. Tubbs, Cole A. Witham
  • Patent number: 10781117
    Abstract: The present invention relates to a method of dewatering an aqueous mineral suspension comprising introducing into the suspension a flocculating system comprising a mixture of polyethylene glycol and polyethylene oxide polymers, in particular a mixture of one or more low molecular mass polyethylene glycol with one or more high molecular mass polyethylene oxide. Said mixture of polyethylene glycol and polyethylene oxide polymers is useful for the treatment of suspensions of particulate material, especially waste mineral slurries. The invention is particularly suitable for the treatment of tailings and other waste material resulting from mineral processing, in particular, the processing of oil sands tailings.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: September 22, 2020
    Assignee: Dow Global Technologies LLC
    Inventors: Carol E. Mohler, Domonique Downing, Paul A. Gillis, Stephanie L. Hughes, Jason S. Moore, Michael K. Poindexter, Thomas L. Sanders, Jr., Harpreet Singh, Cole A. Witham
  • Publication number: 20200016553
    Abstract: The present invention relates to an in-line mixing apparatus and use therein for adding a polymer solution and dewatering an aqueous mineral suspension. Said method comprises statically mixing the aqueous mineral suspension with a poly(ethylene oxide) (co)polymer to form a dough-like material. The viscous mixture material is then dynamically mixed in an in-line reactor to reduce the mixture viscosity and to form microflocs and release water. Said method is particularly useful for the treatment of suspensions of particulate material, especially waste mineral slurries, especially for the treatment of tailings and other waste material resulting from mineral processing, in particular, the processing of oil sands tailings.
    Type: Application
    Filed: September 23, 2019
    Publication date: January 16, 2020
    Inventors: Paul A. Gillis, Jason S. Moore, Billy G. Smith, Michael D. Cloeter, Michael K. Poindexter, Irfan Khan
  • Publication number: 20190276345
    Abstract: The present invention relates to a process for flocculating and dewatering an aqueous mineral suspension. Said process comprises mixing a powdered poly(ethylene oxide) (co)polymer with the aqueous mineral suspension. Said method is particularly useful for the treatment of suspensions of particulate material, especially waste mineral slurries, especially for the treatment of tailings and other waste material resulting from mineral processing, in particular, the processing of oil sands tailings.
    Type: Application
    Filed: September 11, 2017
    Publication date: September 12, 2019
    Applicant: Dow Global Technologies LLC
    Inventors: Lizbeth ROSTRO, Wu CHEN, Paul A. GILLIS, Jason S. MOORE, Michael K. POINDEXTER, Harpeet SINGH
  • Publication number: 20190233310
    Abstract: The present invention relates to a process for mixing a flocculant composition with mineral suspensions, especially waste mineral slurries, using an acoustic mixer. Preferably the flocculant composition is a polymeric flocculant composition preferably comprising a poly(ethylene oxide) homopolymer or copolymer. The process of the present invention is particularly suitable for the treatment of tailings and other waste material resulting from mineral processing, in particular, processing of oil sands tailings.
    Type: Application
    Filed: July 18, 2017
    Publication date: August 1, 2019
    Applicant: Dow Global Technologies LLC
    Inventors: Carol E. MOHLER, Michael K. POINDEXTER, Thomas L. SANDERS, JR., Cole A. WITHAM
  • Patent number: 10315944
    Abstract: The present invention relates to a method of dewatering an aqueous mineral suspension comprising introducing into the suspension a flocculating system comprising a poly(ethylene oxide) copolymer, in particular a copolymer of ethylene oxide and one or more silane- or siloxane-functionalized glycidyl ether monomer. Said poly(ethylene oxide) copolymers are useful for the treatment of suspensions of particulate material, especially waste mineral slurries. The invention is particularly suitable for the treatment of tailings and other waste material resulting from mineral processing, in particular, the processing of oil sands tailings.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: June 11, 2019
    Assignee: Dow Global Technologies LLC
    Inventors: Cole A. Witham, Matthew J. Hansen, James E. Hitt, Carol E. Mohler, Michael K. Poindexter
  • Publication number: 20190152814
    Abstract: The present invention relates to a method of dewatering an aqueous mineral suspension comprising introducing into the suspension a flocculating system comprising a mixture of polyethylene oxide polymers, in particular a mixture of one or more high molecular weight polyethylene oxide polymer and one or more ultra high molecular weight polyethylene oxide polymer. Said mixture of polyethylene oxide polymers is useful for the treatment of suspensions of particulate material, especially waste mineral slurries. The invention is particularly suitable for the treatment of tailings and other waste material resulting from mineral processing, in particular, the processing of oil sands tailings.
    Type: Application
    Filed: May 22, 2017
    Publication date: May 23, 2019
    Inventors: Cole Witham, Paul A. Gillis, Michael K. Poindexter, Jason S. Moore
  • Publication number: 20180201528
    Abstract: The present invention relates to a method of dewatering an aqueous mineral suspension comprising introducing into the suspension a flocculating system comprising a mixture of polyethylene glycol and polyethylene oxide polymers, in particular a mixture of one or more low molecular mass polyethylene glycol with one or more high molecular mass polyethylene oxide. Said mixture of polyethylene glycol and polyethylene oxide polymers is useful for the treatment of suspensions of particulate material, especially waste mineral slurries. The invention is particularly suitable for the treatment of tailings and other waste material resulting from mineral processing, in particular, the processing of oil sands tailings.
    Type: Application
    Filed: August 9, 2016
    Publication date: July 19, 2018
    Inventors: Carol E. Mohler, Domonique Downing, Paul A. Gillis, Stephanie L. Hughes, Jason S. Moore, Michael K. Poindexter, Thomas L. Sanders, Harpreet Singh, Cole A. Witham
  • Patent number: 9943782
    Abstract: Embodiments of the present disclosure include a method of separating an oil-in-water emulsion formed during crude oil production into a water phase and an oil phase that includes adding 1 part-per-million (ppm) to 10000 ppm of a cationic vinyl imidazolium-based copolymer to the oil-in-water emulsion, based on the total volume of the oil-in-water emulsion, to form a water phase and an oil phase, and separating the water phase from the oil phase.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: April 17, 2018
    Assignee: Dow Global Technologies LLC
    Inventors: M. J. Yanjarappa, Cecile Boyer, Stephen M. Hoyles, Michael K. Poindexter
  • Patent number: 9758397
    Abstract: Embodiments of the present disclosure include a method of separating an oil-in-water emulsion formed during crude oil production into a water phase and an oil phase that includes adding 1 part-per-million (ppm) to 10000 ppm of an N-vinylpyrrolidone based cationic copolymer to the oil-in-water emulsion, based on the total volume of the oil-in-water emulsion, to form a water phase and an oil phase, and separating the water phase from the oil phase.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: September 12, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: M. J. Yanjarappa, Cecile Boyer, Stephen M. Hoyles, Michael K. Poindexter
  • Publication number: 20170247271
    Abstract: The present invention relates to a method for flocculating and dewatering oil sands fine tailings. Said method comprises mixing the aqueous mineral suspension with a poly(ethylene oxide) (co)polymer to form a dough-like material. The material is then dynamically mixed in an in-line reactor to break down the dough-like material to form microflocs having an average size of 1 to 500 microns, and to release water. The internal diameter of the in-line reactor is at most five times the internal diameter of the inlet pipe of the reactor. The suspension of microflocs has a viscosity of at most 1000 cP and a yield stress of at most 300 Pa.
    Type: Application
    Filed: July 31, 2015
    Publication date: August 31, 2017
    Applicant: Dow Global Technologies LLC
    Inventors: Paul A. Gillis, Jason S. Moore, Billy G. Smith, Michael D. Cloeter, Michael K. Poindexter, Carol E. Mohler, Wu Chen, Cole A. Witham, Justice Alaboson, Shankhadeep Das, Harpreet Singh
  • Publication number: 20170216791
    Abstract: The present invention relates to an in-line mixing apparatus and use therein for adding a polymer solution and dewatering an aqueous mineral suspension. Said method comprises statically mixing the aqueous mineral suspension with a poly(ethylene oxide) (co) polymer to form a dough-like material. The viscous mixture material is then dynamically mixed in an in-line reactor 40 to reduce the mixture viscosity and to form microflocs and release water. Said method is particularly useful for the treatment of suspensions of particulate material, especially waste mineral slurries, especially for the treatment of tailings and other waste material resulting from mineral processing, in particular, the processing of oil sands tailings.
    Type: Application
    Filed: July 31, 2015
    Publication date: August 3, 2017
    Applicant: Dow Global Technologies LLC
    Inventors: Paul A. Gillis, Jason S. Moore, Billy G. Smith, Michael D. Cloeter, Michael K. Poindexter, Irfan Khan
  • Publication number: 20170218247
    Abstract: The present invention relates to compositions and methods for reducing or preventing the loss of drilling fluids and other well servicing fluids into a subterranean formation during drilling or construction of boreholes in said formation. Specifically, this invention comprises a curable thermosetting composition comprising a polyfunctional (meth)acrylate, a polyfunctional (meth)acrylamide, or mixture thereof, one or more epoxy resin, and one or more (cyclo)aliphatic polyamine.
    Type: Application
    Filed: September 3, 2015
    Publication date: August 3, 2017
    Applicant: Dow Global Technologies LLC
    Inventors: Mark F. SONNENSCHEIN, Michael K. POINDEXTER, Robert P. SCHLEMMER, Justin M. VIRGILI, Benjamin L. WENDT
  • Patent number: 9688899
    Abstract: The present invention relates to compositions and methods for reducing or preventing the loss of drilling fluids and other well servicing fluids into a subterranean formation during drilling or construction of boreholes in said formation. Specifically, this invention comprises a curable composition capable of free radical polymerization for creating lost circulation material in-situ.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: June 27, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: Phillip S. Athey, Bernard E. Obi, Michael K. Poindexter