Patents by Inventor Michael Kappes

Michael Kappes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11663157
    Abstract: A system and method are provided for interfacing JESD204-to-PCIe communications. The method transceives JESD204 link layer messages with a JESD204 link layer. The method converts between JESD204 link layer messages and PCIe scrambled messages. The method converts between PCIe scrambled messages and PCIe encoded messages. The PCIe encoded messages are transceived at a JESD clock rate. The PCIe encoded messages transceived at the JESD clock rate are buffered and PCIe encoded messages are then transceived at a PCIe clock rate. The PCIe encoded messages at the PCIe clock rate are transceived with a PCIe physical layer. That is, PCIe encoded messages are either transmitted to the PCIe physical layer at the PCIe clock rate (the transmission path), or received from the PCIe physical layer (at the PCIe clock rate) and buffered (the receive path). The system and method also enable conventional JESD link layer-to-JESD physical layer communications.
    Type: Grant
    Filed: December 22, 2022
    Date of Patent: May 30, 2023
    Assignee: IQ-Analog Corporation
    Inventors: Gregory Uvieghara, Michael Kappes
  • Patent number: 10498350
    Abstract: A multi-zone digital-to-analog device is provided with a digital-to-analog (D/A) stage having an input to accept a digital input signal with a data bandwidth of M Hertz (Hz), a clock input to accept a clock signal with a clock frequency of P Hz, and an output to supply an analog value having a bandwidth of M Hz. An upsampling stage has an input to accept the analog value and a clock input to accept the clock signal. The upsampling stage has a device bandwidth of L Hz to supply an analog output signal with a full power bandwidth of K Hz, where (P/2)=M and M<K<L. The upsampling stage supplies analog output signal images in a plurality of Nyquist zones. In one aspect, the D/A stage supplies N deinterleaved analog values having a combined bandwidth of M Hz, where N×(P/2)=M.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: December 3, 2019
    Assignee: IQ-Analog Corporation
    Inventors: Michael Kappes, Steven R. Norsworthy, Costantino Pala
  • Publication number: 20190013821
    Abstract: A multi-zone digital-to-analog device is provided with a digital-to-analog (D/A) stage having an input to accept a digital input signal with a data bandwidth of M Hertz (Hz), a clock input to accept a clock signal with a clock frequency of P Hz, and an output to supply an analog value having a bandwidth of M Hz. An upsampling stage has an input to accept the analog value and a clock input to accept the clock signal. The upsampling stage has a device bandwidth of L Hz to supply an analog output signal with a full power bandwidth of K Hz, where (P/2)=M and M<K<L. The upsampling stage supplies analog output signal images in a plurality of Nyquist zones. In one aspect, the D/A stage supplies N deinterleaved analog values having a combined bandwidth of M Hz, where N×(P/2)=M.
    Type: Application
    Filed: June 20, 2018
    Publication date: January 10, 2019
    Inventors: Michael Kappes, Steven R. Norsworthy, Costantino Pala
  • Patent number: 10110409
    Abstract: A multi-zone analog-to-digital converter (ADC) is provided that includes a track-and-hold (T/H) stage having a bandwidth of L Hertz (Hz) to accept an analog input signal, a clock input to accept a clock signal with a clock frequency of P Hz, and N deinterleaved signal outputs with a combined bandwidth of M Hz. N×(P/2)=M, L>Q×M, and Q is an integer >1. The T/H stage is able to sample an analog input signal in the Qth Nyquist Zone, where Q is an integer. A quantizer stage has N interleaved signal inputs connected to corresponding T/H stage signal outputs, a clock input to accept the clock signal, and an output to supply a digital output signal having a bandwidth of M Hz. A packaging interface typically connects the T/H stage to the quantizer stage, and has a bandwidth less than the clock frequency.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: October 23, 2018
    Assignee: IQ-Analog Corporation
    Inventors: Michael Kappes, Steven R. Norsworthy
  • Patent number: 10033398
    Abstract: A multi-zone digital-to-analog device is provided with a digital-to-analog (D/A) stage having an input to accept a digital input signal with a data bandwidth of M Hertz (Hz), a clock input to accept a clock signal with a clock frequency of P Hz, and an output to supply an analog value having a bandwidth of M Hz. An upsampling stage has an input to accept the analog value and a clock input to accept the clock signal. The upsampling stage has a device bandwidth of L Hz to supply an analog output signal with a full power bandwidth of K Hz, where (P/2)=M and M<K<L. The upsampling stage supplies analog output signal images in a plurality of Nyquist zones. In one aspect, the D/A stage supplies N deinterleaved analog values having a combined bandwidth of M Hz, where N×(P/2)=M.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: July 24, 2018
    Assignee: IQ-Analog Corporation
    Inventors: Michael Kappes, Steven R. Norsworthy, Costantino Pala
  • Patent number: 9979582
    Abstract: A multi-zone analog-to-digital converter (ADC) is provided that includes a track-and-hold (T/H) stage having a bandwidth of L Hertz (Hz) to accept an analog input signal, a clock input to accept a clock signal with a clock frequency of P Hz, and N deinterleaved signal outputs with a combined bandwidth of M Hz. N×(P/2)=M, L>Q×M, and Q is an integer >1. The T/H stage is able to sample an analog input signal in the Qth Nyquist Zone, where Q is an integer. A quantizer stage has N interleaved signal inputs connected to corresponding T/H stage signal outputs, a clock input to accept the clock signal, and an output to supply a digital output signal having a bandwidth of M Hz. A packaging interface typically connects the T/H stage to the quantizer stage, and has a bandwidth less than the clock frequency.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: May 22, 2018
    Assignee: IQ-Analog Corp.
    Inventors: Michael Kappes, Steven R. Norsworthy
  • Patent number: 9258004
    Abstract: A method is provided for supplying a customized data converter fabricated from a universal function die. The method initially fabricates a plurality of universal data converter dice. Each universal data converter die is capable of performing a first plurality of data conversion algorithms. After the dice are made, each universal data converter die is tested to verify the performance of the first plurality of data conversion algorithms. Subsequently, a request is received for a customized data converter capable of performing a first data conversion function, which is selected from among the first plurality of data conversion algorithms. The method then fabricates a customized data converter capable of performing the first data conversion function, using a tested universal data converter die. The unselected data converter functions are disabled (not enabled). A configuration interface may be used to enable the requested data conversion function.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: February 9, 2016
    Assignee: IQ-Analog Corporation
    Inventor: Michael Kappes
  • Publication number: 20150188558
    Abstract: A method is provided for supplying a customized data converter fabricated from a universal function die. The method initially fabricates a plurality of universal data converter dice. Each universal data converter die is capable of performing a first plurality of data conversion algorithms. After the dice are made, each universal data converter die is tested to verify the performance of the first plurality of data conversion algorithms. Subsequently, a request is received for a customized data converter capable of performing a first data conversion function, which is selected from among the first plurality of data conversion algorithms. The method then fabricates a customized data converter capable of performing the first data conversion function, using a tested universal data converter die. The unselected data converter functions are disabled (not enabled). A configuration interface may be used to enable the requested data conversion function.
    Type: Application
    Filed: March 13, 2015
    Publication date: July 2, 2015
    Inventor: Michael Kappes
  • Patent number: 9019137
    Abstract: A charge canceling multiplying digital-to-analog converter (MDAC) is provided with a reference block having inputs to accept reference voltages each sample clock cycle. The MDAC includes a sampling block having inputs to accept differential analog input voltage signals each sample clock cycle. A differential amplifier has a negative input and positive input connected to the reference block and sampling block to receive differential amplifier input signals, and a positive output and a negative output to supply differential output voltage signals each amplify clock cycle. The sampling section includes a first pair of feedback capacitors connected between the differential amplifier negative input and positive output, and a second pair of feedback capacitors connected between the differential amplifier positive input and negative output each amplify clock cycle. A capacitor from the first pair of parallel feedback capacitors is swapped with a capacitor from the second pair prior to each sample clock cycle.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: April 28, 2015
    Assignee: IQ-Analog Corporation
    Inventors: Mikko Waltari, Michael Kappes
  • Publication number: 20150109038
    Abstract: A system and method are provided for frequency multiplication jitter correction. The method accepts an analog reference signal having a first frequency, and using the analog reference signal, derives a system clock signal having a second frequency, greater than the first frequency. A PLL using a voltage controlled oscillator (VCO) is one example of a frequency multiplier. The method samples the amplitude of the analog reference signal using the system clock signal and converts the sampled analog reference signal into a digitized reference signal. In response to comparing the digitized reference signal to an ideal digitized reference signal, the phase error correction for the system clock signal is derived. The phase error correction at a first instance of time can be applied to the digitized data signal, previously converted from an analog data signal sampled at a first instance of time with the system clock signal.
    Type: Application
    Filed: December 8, 2014
    Publication date: April 23, 2015
    Inventors: Mikko Waltari, Michael Kappes, William Huff
  • Patent number: 9007243
    Abstract: A method is provided for supplying a customized data converter fabricated from a universal function die. The method initially fabricates a plurality of universal data converter dice. Each universal data converter die is capable of performing a first plurality of data conversion algorithms. After the dice are made, each universal data converter die is tested to verify the performance of the first plurality of data conversion algorithms. Subsequently, a request is received for a customized data converter capable of performing a first data conversion function, which is selected from among the first plurality of data conversion algorithms. The method then fabricates a customized data converter capable of performing the first data conversion function, using a tested universal data converter die. The unselected data converter functions are disabled (not enabled). A configuration interface may be used to enable the requested data conversion function.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: April 14, 2015
    Assignee: IQ-Analog Corporation
    Inventor: Michael Kappes
  • Patent number: 9007108
    Abstract: A system and method are provided for frequency multiplication jitter correction. The method accepts an analog reference signal having a first frequency, and using the analog reference signal, derives a system clock signal having a second frequency, greater than the first frequency. A PLL using a voltage controlled oscillator (VCO) is one example of a frequency multiplier. The method samples the amplitude of the analog reference signal using the system clock signal and converts the sampled analog reference signal into a digitized reference signal. In response to comparing the digitized reference signal to an ideal digitized reference signal, the phase error correction for the system clock signal is derived. The phase error correction at a first instance of time can be applied to the digitized data signal, previously converted from an analog data signal sampled at a first instance of time with the system clock signal.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: April 14, 2015
    Assignee: IQ-Analog Corporation
    Inventors: Mikko Waltari, Michael Kappes, William Huff
  • Publication number: 20150061905
    Abstract: A method is provided for supplying a customized data converter fabricated from a universal function die. The method initially fabricates a plurality of universal data converter dice. Each universal data converter die is capable of performing a first plurality of data conversion algorithms. After the dice are made, each universal data converter die is tested to verify the performance of the first plurality of data conversion algorithms. Subsequently, a request is received for a customized data converter capable of performing a first data conversion function, which is selected from among the first plurality of data conversion algorithms. The method then fabricates a customized data converter capable of performing the first data conversion function, using a tested universal data converter die. The unselected data converter functions are disabled (not enabled). A configuration interface may be used to enable the requested data conversion function.
    Type: Application
    Filed: November 10, 2014
    Publication date: March 5, 2015
    Inventor: Michael Kappes
  • Patent number: 8957796
    Abstract: A system and method are provided for frequency multiplication jitter correction. The method accepts an analog reference signal having a first frequency, and using the analog reference signal, derives a system clock signal having a second frequency, greater than the first frequency. A PLL using a voltage controlled oscillator (VCO) is one example of a frequency multiplier. The method samples the amplitude of the analog reference signal using the system clock signal and converts the sampled analog reference signal into a digitized reference signal. In response to comparing the digitized reference signal to an ideal digitized reference signal, the phase error correction for the system clock signal is derived. The phase error correction at a first instance of time can be applied to the digitized data signal, previously converted from an analog data signal sampled at a first instance of time with the system clock signal.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: February 17, 2015
    Assignee: IQ—Analog Corporation
    Inventors: Mikko Waltari, Michael Kappes, William Huff
  • Publication number: 20150022384
    Abstract: A system and method are provided for frequency multiplication jitter correction. The method accepts an analog reference signal having a first frequency, and using the analog reference signal, derives a system clock signal having a second frequency, greater than the first frequency. A PLL using a voltage controlled oscillator (VCO) is one example of a frequency multiplier. The method samples the amplitude of the analog reference signal using the system clock signal and converts the sampled analog reference signal into a digitized reference signal. In response to comparing the digitized reference signal to an ideal digitized reference signal, the phase error correction for the system clock signal is derived. The phase error correction at a first instance of time can be applied to the digitized data signal, previously converted from an analog data signal sampled at a first instance of time with the system clock signal.
    Type: Application
    Filed: October 6, 2014
    Publication date: January 22, 2015
    Inventors: Mikko Waltari, Michael Kappes, William Huff
  • Publication number: 20150015313
    Abstract: A system and method are provided for frequency multiplication jitter correction. The method accepts an analog reference signal having a first frequency, and using the analog reference signal, derives a system clock signal having a second frequency, greater than the first frequency. A PLL using a voltage controlled oscillator (VCO) is one example of a frequency multiplier. The method samples the amplitude of the analog reference signal using the system clock signal and converts the sampled analog reference signal into a digitized reference signal. In response to comparing the digitized reference signal to an ideal digitized reference signal, the phase error correction for the system clock signal is derived. The phase error correction at a first instance of time can be applied to the digitized data signal, previously converted from an analog data signal sampled at a first instance of time with the system clock signal.
    Type: Application
    Filed: October 1, 2014
    Publication date: January 15, 2015
    Inventors: Mikko Waltari, Michael Kappes, William Huff
  • Patent number: 8917124
    Abstract: A system and method are provided for frequency multiplication jitter correction. The method accepts an analog reference signal having a first frequency, and using the analog reference signal, derives a system clock signal having a second frequency, greater than the first frequency. A PLL using a voltage controlled oscillator (VCO) is one example of a frequency multiplier. The method samples the amplitude of the analog reference signal using the system clock signal and converts the sampled analog reference signal into a digitized reference signal. In response to comparing the digitized reference signal to an ideal digitized reference signal, the phase error correction for the system clock signal is derived. The phase error correction at a first instance of time can be applied to the digitized data signal, previously converted from an analog data signal sampled at a first instance of time with the system clock signal.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: December 23, 2014
    Assignee: IQ-Analog Corporation
    Inventors: Mikko Waltari, Michael Kappes, William Huff
  • Patent number: 8878577
    Abstract: A system and method are provided for frequency multiplication jitter correction. The method accepts an analog reference signal having a first frequency, and using the analog reference signal, derives a system clock signal having a second frequency, greater than the first frequency. A PLL using a voltage controlled oscillator (VCO) is one example of a frequency multiplier. The method samples the amplitude of the analog reference signal using the system clock signal and converts the sampled analog reference signal into a digitized reference signal. In response to comparing the digitized reference signal to an ideal digitized reference signal, the phase error correction for the system clock signal is derived. The phase error correction at a first instance of time can be applied to the digitized data signal, previously converted from an analog data signal sampled at a first instance of time with the system clock signal.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: November 4, 2014
    Assignee: IQ-Analog Corporation
    Inventors: Mikko Waltari, Michael Kappes, William Huff
  • Patent number: 8760335
    Abstract: A data converter module is provided with an analog interface to receive analog signals, a digital interface to transmit digital signals, and a configuration interface to accept configuration signals. The data conversion module also includes a data conversion array (DCA) with selectively engageable data conversion circuits for the conversion of analog input signals to digital output signals, where the data conversion circuits are responsive to the configuration signals. The DCA's data conversion circuits include configurable data resolution circuits and configurable data conversion speed circuits. For example, the configurable data resolution circuits may be selected from averaging, oversampling, and multi-stage pipelining circuits. The DCA configurable data speed circuit may interleave the outputs from multiple parallelly connected ADCs operating at different clock phases. In one aspect, the number of clock phases is selectable. Also provided are methods for configurable data conversion.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: June 24, 2014
    Assignee: IQ-Analog Corporation
    Inventor: Michael Kappes
  • Patent number: 8711026
    Abstract: A data converter module is provided with an analog interface to receive analog signals, a digital interface to transmit digital signals, and a configuration interface to accept configuration signals. The data conversion module also includes a data conversion array (DCA) with selectively engageable data conversion circuits for the conversion of analog input signals to digital output signals, where the data conversion circuits are responsive to the configuration signals. The DCA's data conversion circuits include configurable data resolution circuits and configurable data conversion speed circuits. For example, the configurable data resolution circuits may be selected from averaging, oversampling, and multi-stage pipelining circuits. The DCA configurable data speed circuit may interleave the outputs from multiple parallelly connected ADCs operating at different clock phases. In one aspect, the number of clock phases is selectable. Also provided are methods for configurable data conversion.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: April 29, 2014
    Assignee: IQ-Analog Corporation
    Inventor: Michael Kappes