Patents by Inventor Michael Kubis

Michael Kubis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180364036
    Abstract: A method of determining an edge roughness parameter has the steps: (1010) controlling a radiation system to provide a spot of radiation at a measurement position for receiving a substrate; (1020) receiving a measurement signal from a sensor for measuring intensity of a forbidden diffraction order (such as a second order) being diffracted by a metrology target at the measurement position when the metrology target is illuminated by the spot of radiation, the metrology target comprising a repetitive pattern being configured by configuration of a linewidth/pitch ratio (of about 0.5) to control an amount of destructive interference that leads to forbidding of the diffraction order, the sensor being configured to provide the measurement signal based on the measured intensity; and (1040) determining an edge roughness parameter based on the measured intensity of the forbidden diffraction order.
    Type: Application
    Filed: May 24, 2018
    Publication date: December 20, 2018
    Applicant: ASML Netherlands B.V.
    Inventors: Martin Jacobus Johan JAK, Richard Quintanilha, Arie Jeffrey Den Boef, Michael Kubis
  • Publication number: 20180307135
    Abstract: A method including obtaining a measurement and/or simulation result of a pattern after being processed by an etch tool of a patterning system, determining a patterning error due to an etch loading effect based on the measurement and/or simulation result, and creating, by a computer system, modification information for modifying a patterning device and/or for adjusting a modification apparatus upstream in the patterning system from the etch tool based on the patterning error, wherein the patterning error is converted to a correctable error and/or reduced to a certain range, when the patterning device is modified according to the modification information and/or the modification apparatus is adjusted according to the modification information.
    Type: Application
    Filed: September 28, 2016
    Publication date: October 25, 2018
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Peter TEN BERGE, Everhardus Cornelis MOS, Richard Johannes Franciscus VAN HAREN, Peter Hanzen WARDENIER, Erik JENSEN, Bernardo KASTRUP, Michael KUBIS, Johannes Catharinus Hubertus MULKENS, Davis Frans Simon DECKERS, Wolfgang Helmut HENKE, Joungchel LEE
  • Patent number: 9946167
    Abstract: Methods are disclosed for measuring target structures formed by a lithographic process on a substrate. A grating structure within the target is smaller than an illumination spot and field of view of a measurement optical system. The optical system has a first branch leading to a pupil plane imaging sensor and a second branch leading to a substrate plane imaging sensor. A spatial light modulator is arranged in an intermediate pupil plane of the second branch of the optical system. The SLM imparts a programmable pattern of attenuation that may be used to correct for asymmetries between the first and second modes of illumination or imaging. By use of specific target designs and machine-learning processes, the attenuation patterns may also be programmed to act as filter functions, enhancing sensitivity to specific parameters of interest, such as focus.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: April 17, 2018
    Assignee: ASML Netherlands B.V.
    Inventors: Hendrik Jan Hidde Smilde, Arno Jan Bleeker, Willem Marie Julia Marcel Coene, Patrick Warnaar, Michael Kubis
  • Publication number: 20180067900
    Abstract: A method including evaluating, with respect to a parameter representing remaining uncertainty of a mathematical model fitting measured data, one or more mathematical models for fitting measured data and one or more measurement sampling schemes for measuring data, against measurement data across a substrate, and identifying one or more mathematical models and/or one or more measurement sampling schemes, for which the parameter crosses a threshold.
    Type: Application
    Filed: March 25, 2016
    Publication date: March 8, 2018
    Applicant: ASML Netherlands B.V.
    Inventors: Everhardus Cornelis MOS, Velislava IGNATOVA, Erik JENSEN, Michael KUBIS, Hubertus Johannes Gertrudus SIMONS, Peter TEN BERGE, Erik Johannes Maria WALLERBOS, Jochem Sebastiaan WILDENBERG
  • Patent number: 9454084
    Abstract: A method to determine the usefulness of an alignment mark of a first pattern in transferring a second pattern to a substrate relative to the first pattern already present on the substrate includes measuring the position of the alignment mark, modeling the position of the alignment mark, determining the model error between measured and modeled position, measuring a corresponding overlay error between first and second pattern and comparing the model error with the overlay error to determine the usefulness of the alignment mark. Subsequently this information can be used when processing next substrates thereby improving the overlay for these substrates. A lithographic apparatus and/or overlay measurement system may be operated in accordance with the method.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: September 27, 2016
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Irina Lyulina, Franciscus Godefridus Casper Bijnen, Remi Daniel Marie Edart, Antoine Gaston Marie Kiers, Michael Kubis
  • Publication number: 20160179019
    Abstract: A pattern from a patterning device is applied to a substrate by a lithographic apparatus. The applied pattern includes product features and metrology targets. The metrology targets include large targets and small targets which are for measuring overlay. Some of the smaller targets are distributed at locations between the larger targets, while other small targets are placed at the same locations as a large target. By comparing values measured using a small target and large target at the same location, parameter values measured using all the small targets can be corrected for better accuracy. The large targets can be located primarily within scribe lanes while the small targets are distributed within product areas.
    Type: Application
    Filed: March 1, 2016
    Publication date: June 23, 2016
    Applicant: ASML Netherlands B.V.
    Inventors: Maurits VAN DER SCHAAR, Patrick WARNAAR, Kaustuve BHATTACHARYYA, Hendrik Jan Hidde SMILDE, Michael KUBIS
  • Patent number: 9331022
    Abstract: A pattern from a patterning device is applied to a substrate by a lithographic apparatus. The applied pattern includes product features and metrology targets. The metrology targets include large targets and small targets which are for measuring overlay. Some of the smaller targets are distributed at locations between the larger targets, while other small targets are placed at the same locations as a large target. By comparing values measured using a small target and large target at the same location, parameter values measured using all the small targets can be corrected for better accuracy. The large targets can be located primarily within scribe lanes while the small targets are distributed within product areas.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: May 3, 2016
    Assignee: ASML Netherlands B.V.
    Inventors: Maurits Van Der Schaar, Patrick Warnaar, Kaustuve Bhattacharyya, Hendrik Jan Hidde Smilde, Michael Kubis
  • Patent number: 9291916
    Abstract: A substrate is loaded onto a substrate support of a lithographic apparatus, after which the apparatus measures locations of substrate alignment marks. These measurements define first correction information allowing the apparatus to apply a pattern at one or more desired locations on the substrate. Additional second correction information is used to enhance accuracy of pattern positioning, in particular to correct higher order distortions of a nominal alignment grid. The second correction information may be based on measurements of locations of alignment marks made when applying a previous pattern to the same substrate. The second correction information may alternatively or in addition be based on measurements made on similar substrates that have been patterned prior to the current substrate.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: March 22, 2016
    Assignee: ASML Netherlands B.V.
    Inventors: Stefan Cornelis Theodorus Van Der Sanden, Richard Johannes Franciscus Van Haren, Hubertus Johannes Gertrudus Simons, Remi Daniel Marie Edart, Xiuhong Wei, Irina Lyulina, Michael Kubis
  • Publication number: 20160061589
    Abstract: A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.
    Type: Application
    Filed: August 25, 2015
    Publication date: March 3, 2016
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Kaustuve BHATTACHARYYA, Henricus Wilhelmus Maria Van Buel, Christophe David Fouquet, Hendrik Jan Hidde Smilde, Maurits Van Der Schaar, Arie Jeffrey Den Boef, Richard Johannes Franciscus Van Haren, Xing Lan Liu, Johannes Marcus Maria Beltman, Andreas Fuchs, Omer Abubaker Omer Adam, Michael Kubis, Martin Jacobus Johan Jak
  • Publication number: 20160033877
    Abstract: Methods are disclosed for measuring target structures formed by a lithographic process on a substrate. A grating structure within the target is smaller than an illumination spot and field of view of a measurement optical system. The optical system has a first branch leading to a pupil plane imaging sensor and a second branch leading to a substrate plane imaging sensor. A spatial light modulator is arranged in an intermediate pupil plane of the second branch of the optical system. The SLM imparts a programmable pattern of attenuation that may be used to correct for asymmetries between the first and second modes of illumination or imaging. By use of specific target designs and machine-learning processes, the attenuation patterns may also be programmed to act as filter functions, enhancing sensitivity to specific parameters of interest, such as focus.
    Type: Application
    Filed: August 12, 2015
    Publication date: February 4, 2016
    Applicant: ASML Netherlands B.V.
    Inventors: Hendrik Jan Hidde SMILDE, Arno Jan Bleeker, Willem Marie Julia Marcel Coene, Patrick Warnaar, Michael Kubis
  • Patent number: 9163935
    Abstract: Disclosed is a device manufacturing method, and accompanying inspection and lithographic apparatuses. The method comprises measuring on the substrate a property such as asymmetry of a first overlay marker and measuring on the substrate a property such as asymmetry of an alignment marker. In both cases the asymmetry is determined. The position of the alignment marker on the substrate is then determined using an alignment system and the asymmetry information of the alignment marker and the substrate aligned using this measured position. A second overlay marker is then printed on the substrate; and a lateral overlay measured on the substrate of the second overlay marker with respect to the first overlay marker using the determined asymmetry information of the first overlay marker.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: October 20, 2015
    Assignee: ASML Netherlands B.V.
    Inventors: Arie Jeffrey Den Boef, Kaustuve Bhattacharyya, Martin Jacobus Johan Jak, Michael Kubis
  • Patent number: 9158194
    Abstract: An approach is used to estimate and correct the overlay variation as function of offset for each measurement. A target formed on a substrate includes periodic gratings. The substrate is illuminated with a circular spot on the substrate with a size larger than each grating. Radiation scattered by each grating is detected in a dark-field scatterometer to obtain measurement signals. The measurement signals are used to calculate overlay. The dependence (slope) of the overlay as a function of position in the illumination spot is determined. An estimated value of the overlay at a nominal position such as the illumination spot's center can be calculated, correcting for variation in the overlay as a function of the target's position in the illumination spot. This compensates for the effect of the position error in the wafer stage movement, and the resulting non-centered position of the target in the illumination spot.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: October 13, 2015
    Assignee: ASML Netherlands B.V.
    Inventors: Armand Eugene Albert Koolen, Henricus Petrus Maria Pellemans, Maurits Van Der Schaar, Peter Clement Paul Vanoppen, Michael Kubis
  • Patent number: 9140998
    Abstract: Methods are disclosed for measuring target structures formed by a lithographic process on a substrate. A grating structure within the target is smaller than an illumination spot and field of view of a measurement optical system. The optical system has a first branch leading to a pupil plane imaging sensor and a second branch leading to a substrate plane imaging sensor. A spatial light modulator is arranged in an intermediate pupil plane of the second branch of the optical system. The SLM imparts a programmable pattern of attenuation that may be used to correct for asymmetries between the first and second modes of illumination or imaging. By use of specific target designs and machine-learning processes, the attenuation patterns may also be programmed to act as filter functions, enhancing sensitivity to specific parameters of interest, such as focus.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: September 22, 2015
    Assignee: ASML Netherlands B.V.
    Inventors: Hendrik Jan Hidde Smilde, Arno Jan Bleeker, Patrick Warnaar, Willem Marie Julia Marcel Coene, Michael Kubis
  • Patent number: 9081303
    Abstract: In a method of determining the focus of a lithographic apparatus used in a lithographic process on a substrate, the lithographic process is used to form a structure on the substrate, the structure having at least one feature which has an asymmetry in the printed profile which varies as a function of the focus of the lithographic apparatus on the substrate. A first image of the periodic structure is formed and detected while illuminating the structure with a first beam of radiation. The first image is formed using a first part of non-zero order diffracted radiation. A second image of the periodic structure is formed and detected while illuminating the structure with a second beam of radiation. The second image is formed using a second part of the non-zero order diffracted radiation which is symmetrically opposite to the first part in a diffraction spectrum.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: July 14, 2015
    Assignee: ASML Netherlands B.V.
    Inventors: Hugo Augustinus Joseph Cramer, Arie Jeffrey Den Boef, Henricus Johannes Lambertus Megens, Hendrik Jan Hidde Smilde, Adrianus Johannes Hendrikus Schellekens, Michael Kubis
  • Patent number: 9069264
    Abstract: A target structure including a periodic structure is formed on a substrate. An image of the target structure is detected while illuminating the target structure with a beam of radiation, the image being formed using a first part of non-zero order diffracted radiation while excluding zero order diffracted radiation. Intensity values extracted from a region of interest within the image are used to determine a property of the periodic structure. A processing unit recognizes locations of a plurality of boundary features in the image of the target structure to identify regions of interest. The number of boundary features in each direction is at least twice a number of boundaries of periodic structures within the target structure. The accuracy of locating the region is greater than by recognizing only the boundaries of the periodic structure(s).
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: June 30, 2015
    Assignee: ASML Netherlands B.V.
    Inventors: Patrick Warnaar, Mark Van Schijndel, Michael Kubis
  • Publication number: 20150153656
    Abstract: A substrate is loaded onto a substrate support of a lithographic apparatus, after which the apparatus measures locations of substrate alignment marks. These measurements define first correction information allowing the apparatus to apply a pattern at one or more desired locations on the substrate. Additional second correction information is used to enhance accuracy of pattern positioning, in particular to correct higher order distortions of a nominal alignment grid. The second correction information may be based on measurements of locations of alignment marks made when applying a previous pattern to the same substrate. The second correction information may alternatively or in addition be based on measurements made on similar substrates that have been patterned prior to the current substrate.
    Type: Application
    Filed: February 4, 2015
    Publication date: June 4, 2015
    Applicant: ASML Netherlands B.V.
    Inventors: Stefan Cornelis Theodorus VAN DER SANDEN, Richard Johanne Franciscus VAN HAREN, Hubertus Johannes Gertrudus SIMONS, Remi Daniel Marie EDART, Xiuhong WEI, Irina LYULINA, Michael KUBIS
  • Publication number: 20150146188
    Abstract: A method to determine the usefulness of an alignment mark of a first pattern in transferring a second pattern to a substrate relative to the first pattern already present on the substrate includes measuring the position of the alignment mark, modeling the position of the alignment mark, determining the model error between measured and modeled position, measuring a corresponding overlay error between first and second pattern and comparing the model error with the overlay error to determine the usefulness of the alignment mark. Subsequently this information can be used when processing next substrates thereby improving the overlay for these substrates. A lithographic apparatus and/or overlay measurement system may be operated in accordance with the method.
    Type: Application
    Filed: April 23, 2013
    Publication date: May 28, 2015
    Inventors: Irina Lyulina, Franciscus Godefridus Casper Bijnen, Remi Daniel Marie Edart, Antoine Gaston Marie Kiers, Michael Kubis
  • Patent number: 8994944
    Abstract: In a method of determining the focus of a lithographic apparatus used in a lithographic process on a substrate, the lithographic process is used to form a structure on the substrate, the structure having at least one feature which has an asymmetry in the printed profile which varies as a function of the focus of the lithographic apparatus on the substrate. A first image of the periodic structure is formed and detected while illuminating the structure with a first beam of radiation. The first image is formed using a first part of non-zero order diffracted radiation. A second image of the periodic structure is formed and detected while illuminating the structure with a second beam of radiation. The second image is formed using a second part of the non-zero order diffracted radiation which is symmetrically opposite to the first part in a diffraction spectrum.
    Type: Grant
    Filed: January 7, 2014
    Date of Patent: March 31, 2015
    Assignee: ASML Netherlands B.V.
    Inventors: Hugo Augustinus Joseph Cramer, Arie Jeffrey Den Boef, Henricus Johannes Lambertus Megens, Hendrik Jan Hidde Smilde, Adrianus Johannes Hendrikus Schellekens, Michael Kubis
  • Patent number: 8976355
    Abstract: A substrate is loaded onto a substrate support of a lithographic apparatus, after which the apparatus measures locations of substrate alignment marks. These measurements define first correction information allowing the apparatus to apply a pattern at one or more desired locations on the substrate. Additional second correction information is used to enhance accuracy of pattern positioning, in particular to correct higher order distortions of a nominal alignment grid. The second correction information may be based on measurements of locations of alignment marks made when applying a previous pattern to the same substrate. The second correction information may alternatively or in addition be based on measurements made on similar substrates that have been patterned prior to the current substrate.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: March 10, 2015
    Assignee: ASML Netherlands B.V.
    Inventors: Stefan Cornelis Theodorus Van Der Sanden, Richard Johannes Franciscus Van Haren, Hubertus Johannes Gertrudus Simons, Remi Daniel Marie Edart, Xiuhong Wei, Michael Kubis, Irina Lyulina
  • Patent number: 8908147
    Abstract: A method of determining an overlay error. Measuring an overlay target having process-induced asymmetry. Constructing a model of the target. Modifying the model, e.g., by moving one of the structures to compensate for the asymmetry. Calculating an asymmetry-induced overlay error using the modified model. Determining an overlay error in a production target by subtracting the asymmetry-induced overlay error from a measured overlay error. In one example, the model is modified by varying asymmetry p(n?), p(n?) and the calculating an asymmetry-induced overlay error is repeated for a plurality of scatterometer measurement recipes and the step of determining an overlay error in a production target uses the calculated asymmetry-induced overlay errors to select an optimum scatterometer measurement recipe used to measure the production target.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: December 9, 2014
    Assignee: ASML Netherlands B.V.
    Inventors: Arie Jeffrey Den Boef, Maurits Van Der Schaar, Andreas Fuchs, Martyn John Coogans, Kaustuve Bhattacharyya, Stephen Peter Morgan, Michael Kubis