Patents by Inventor Michael L'Bassi

Michael L'Bassi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230304837
    Abstract: Devices and methods for mass flow verification are provided. A mass flow verifier includes a chamber configured to receive a fluid, a critical flow nozzle upstream of the chamber, a chamber valve, a downstream valve, and a bypass valve. The chamber valve is configured to selectively enable fluid flow from the critical flow nozzle to the chamber. The downstream valve is configured to selectively enable fluid flow from the chamber to a downstream location. The bypass valve is configured to selectively enable fluid flow from the critical flow nozzle to a dump location. The mass flow verifier further includes a controller configured to verify flow rate of the fluid based on a rate of rise in pressure of the fluid as detected by a pressure sensor in the chamber.
    Type: Application
    Filed: March 23, 2022
    Publication date: September 28, 2023
    Inventors: Junhua Ding, Michael L'Bassi
  • Patent number: 11513542
    Abstract: A fluid control system and associated method for pulse delivery of a fluid includes a shutoff valve and a mass flow controller (MFC) upstream of the shutoff valve. The MFC includes a flow channel, a control valve to control flow of fluid in the flow channel, a flow sensor to measure flow rate in the flow channel, and a controller having a valve input from the shutoff valve indicating opening of the shutoff valve. The controller is configured to respond to the valve input to control flow of fluid through the control valve to initiate and terminate a pulse of fluid from the flow channel to the shutoff valve to control a mass of fluid delivered during the pulse of fluid. The valve input can be a pressure signal, and the MFC can include a pressure sensor to sense the pressure signal.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: November 29, 2022
    Assignee: MKS Instruments, Inc.
    Inventors: Michael L'Bassi, Mark J. Quaratiello, Junhua Ding
  • Patent number: 11404290
    Abstract: In a pulse gas delivery system, a chamber is pre-charged to a prescribed pressure through an upstream valve. Thereafter, a downstream control valve is opened to control flow of the gas during a gas pulse. A dedicated controller may control the downstream control valve in a feedback loop during the pulse based on pressure and temperature detected during the pulse.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: August 2, 2022
    Assignee: MKS Instruments, Inc.
    Inventors: Junhua Ding, Michael L'Bassi
  • Publication number: 20220161288
    Abstract: Pulsed gas delivery is obtained with mass flow control using a thermal mass flow sensor and control valve. The controller is augmented for pressure control with a downstream pressure sensor. In separate control modes of operation, the control valve is controlled in response to the flow sensor during pulse gas delivery mode and controlled in response to the downstream pressure sensor during pressure control mode of operation.
    Type: Application
    Filed: November 18, 2021
    Publication date: May 26, 2022
    Inventors: Junhua Ding, Michael L'Bassi
  • Patent number: 10969799
    Abstract: A system for delivering pulses of a desired mass of gas to a tool, comprising: a mass flow controller including flow sensor, a control valve and a dedicated controller configured and arranged to receive a recipe of a sequence of steps for opening and closing the control valve so as to deliver as sequence of gas pulses as a function of the recipe. The mass flow controller is configured and arranged so as to operate in either one of at least two modes: as a traditional mass flow controller (MFC) mode or in a pulse gas delivery (PGD) mode.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: April 6, 2021
    Assignee: MKS INSTRUMENTS, INC.
    Inventors: Junhua Ding, Michael L'Bassi, Tseng-Chung Lee
  • Publication number: 20200321225
    Abstract: In a pulse gas delivery system, a chamber is pre-charged to a prescribed pressure through an upstream valve. Thereafter, a downstream control valve is opened to control flow of the gas during a gas pulse. A dedicated controller may control the downstream control valve in a feedback loop during the pulse based on pressure and temperature detected during the pulse.
    Type: Application
    Filed: April 5, 2019
    Publication date: October 8, 2020
    Inventors: Junhua Ding, Michael L'Bassi
  • Publication number: 20200301455
    Abstract: A fluid control system and associated method for pulse delivery of a fluid includes a shutoff valve and a mass flow controller (MFC) upstream of the shutoff valve. The MFC includes a flow channel, a control valve to control flow of fluid in the flow channel, a flow sensor to measure flow rate in the flow channel, and a controller having a valve input from the shutoff valve indicating opening of the shutoff valve. The controller is configured to respond to the valve input to control flow of fluid through the control valve to initiate and terminate a pulse of fluid from the flow channel to the shutoff valve to control a mass of fluid delivered during the pulse of fluid. The valve input can be a pressure signal, and the MFC can include a pressure sensor to sense the pressure signal.
    Type: Application
    Filed: June 10, 2020
    Publication date: September 24, 2020
    Inventors: Michael L'Bassi, Mark J. Quaratiello, Junhua Ding
  • Publication number: 20200241578
    Abstract: A fluid control system and associated method for pulse delivery of a fluid includes a shutoff valve and a mass flow controller (MFC) upstream of the shutoff valve. The MFC includes a flow channel, a control valve to control flow of fluid in the flow channel, a flow sensor to measure flow rate in the flow channel, and a controller having a valve input from the shutoff valve indicating opening of the shutoff valve. The controller is configured to respond to the valve input to control flow of fluid through the control valve to initiate and terminate a pulse of fluid from the flow channel to the shutoff valve to control a mass of fluid delivered during the pulse of fluid. The valve input can be a pressure signal, and the MFC can include a pressure sensor to sense the pressure signal.
    Type: Application
    Filed: September 7, 2018
    Publication date: July 30, 2020
    Inventors: Michael L'Bassi, Mark J. Quaratiello, Junhua Ding
  • Patent number: 10725484
    Abstract: A fluid control system and associated method for pulse delivery of a fluid includes a shutoff valve and a mass flow controller (MFC) upstream of the shutoff valve. The MFC includes a flow channel, a control valve to control flow of fluid in the flow channel, a flow sensor to measure flow rate in the flow channel, and a controller having a valve input from the shutoff valve indicating opening of the shutoff valve. The controller is configured to respond to the valve input to control flow of fluid through the control valve to initiate and terminate a pulse of fluid from the flow channel to the shutoff valve to control a mass of fluid delivered during the pulse of fluid. The valve input can be a pressure signal, and the MFC can include a pressure sensor to sense the pressure signal.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: July 28, 2020
    Assignee: MKS Instruments, Inc.
    Inventors: Michael L'Bassi, Mark J. Quaratiello, Junhua Ding
  • Patent number: 10698426
    Abstract: Fluid control systems, including mass flow control systems, mass flow ratio control systems, and mass flow and ratio control systems, as well as corresponding methods for fluid control are provided. These systems allow one shared pressure sensor to be used for multiple flow channels, and a controller which can accurately determine mass flow on the basis of fluid pressure detected by this shared pressure sensor.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: June 30, 2020
    Assignee: MKS Instruments, Inc.
    Inventors: Junhua Ding, Michael L'Bassi, Wayne Cole
  • Patent number: 10649471
    Abstract: A fluid control system for pulse delivery of a fluid include a flow channel, an isolation valve to initiate and terminate a pulse of fluid from the flow channel, and a pulse mass flow controller (MFC). The MFC includes a control valve to control flow of fluid in the flow channel, a flow sensor to measure flow rate in the flow channel, and a controller to control flow of fluid through the control valve and switching of the isolation valve, to control a mass of fluid delivered during the pulse of fluid. Controlling the flow of fluid through the control valve can be based on feedback from the flow sensor during the pulse initiated and terminated by the isolation valve.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: May 12, 2020
    Assignee: MKS Instruments, Inc.
    Inventors: Junhua Ding, Michael L'Bassi, Gordon Hill
  • Publication number: 20200081459
    Abstract: A fluid control system and associated method for pulse delivery of a fluid includes a shutoff valve and a mass flow controller (MFC) upstream of the shutoff valve. The MFC includes a flow channel, a control valve to control flow of fluid in the flow channel, a flow sensor to measure flow rate in the flow channel, and a controller having a valve input from the shutoff valve indicating opening of the shutoff valve. The controller is configured to respond to the valve input to control flow of fluid through the control valve to initiate and terminate a pulse of fluid from the flow channel to the shutoff valve to control a mass of fluid delivered during the pulse of fluid. The valve input can be a pressure signal, and the MFC can include a pressure sensor to sense the pressure signal.
    Type: Application
    Filed: September 7, 2018
    Publication date: March 12, 2020
    Inventors: Michael L'Bassi, Mark J. Quaratiello, Junhua Ding
  • Patent number: 10514712
    Abstract: Methods, systems, and apparatus for pressure-based flow measurement are provided. A processor receives, from the pressure-based mass flow controller (MFC), an upstream pressure value Pu. The processor computes, for the pressure-based mass flow controller (MFC), a downstream pressure value Pd based on the received upstream pressure value Pu. The processor computes, for the pressure-based mass flow controller (MFC), a flow rate Q based on the received upstream pressure value Pu and the computed downstream pressure value Pd. The processor controls a flow through the pressure-based mass flow controller (MFC) based on the computed flow rate Q. The methods, systems, and apparatus can be used for flow measurement in non-critical or un-choked flow conditions.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: December 24, 2019
    Assignee: MKS Instruments, Inc.
    Inventors: Junhua Ding, Michael L'Bassi
  • Publication number: 20190339725
    Abstract: Fluid control systems, including mass flow control systems, mass flow ratio control systems, and mass flow and ratio control systems, as well as corresponding methods for fluid control are provided. These systems allow one shared pressure sensor to be used for multiple flow channels, and a controller which can accurately determine mass flow on the basis of fluid pressure detected by this shared pressure sensor.
    Type: Application
    Filed: May 7, 2018
    Publication date: November 7, 2019
    Inventors: Junhua Ding, Michael L'Bassi, Wayne Cole
  • Publication number: 20190243392
    Abstract: A fluid control system for pulse delivery of a fluid include a flow channel, an isolation valve to initiate and terminate a pulse of fluid from the flow channel, and a pulse mass flow controller (MFC). The MFC includes a control valve to control flow of fluid in the flow channel, a flow sensor to measure flow rate in the flow channel, and a controller to control flow of fluid through the control valve and switching of the isolation valve, to control a mass of fluid delivered during the pulse of fluid. Controlling the flow of fluid through the control valve can be based on feedback from the flow sensor during the pulse initiated and terminated by the isolation valve.
    Type: Application
    Filed: February 2, 2018
    Publication date: August 8, 2019
    Inventors: Junhua Ding, Michael L'Bassi, Gordon Hill
  • Patent number: 10353408
    Abstract: A system for delivering pulses of a desired mass of gas to a tool, comprising: a mass flow controller including flow sensor, a control valve and a dedicated controller configured and arranged to receive a recipe of a sequence of steps for opening and closing the control valve so as to deliver as sequence of gas pulses as a function of the recipe. The mass flow controller is configured and arranged so as to operate in either one of at least two modes: as a traditional mass flow controller (MFC) mode or in a pulse gas delivery (PGD) mode. Further, the dedicated controller is configured and arranged to delivery pulses of gas in accordance with anyone of three different types of pulse gas delivery processes: a time based pulse delivery process, a mole based pulse delivery process and a profile based pulse delivery process.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: July 16, 2019
    Assignee: MKS Instruments, Inc.
    Inventors: Junhua Ding, Michael L'Bassi, Tseng-Chung Lee
  • Publication number: 20190056755
    Abstract: A system for delivering pulses of a desired mass of gas to a tool, comprising: a mass flow controller including flow sensor, a control valve and a dedicated controller configured and arranged to receive a recipe of a sequence of steps for opening and closing the control valve so as to deliver as sequence of gas pulses as a function of the recipe. The mass flow controller is configured and arranged so as to operate in either one of at least two modes: as a traditional mass flow controller (MFC) mode or in a pulse gas delivery (PGD) mode.
    Type: Application
    Filed: October 23, 2018
    Publication date: February 21, 2019
    Inventors: Junhua Ding, Michael L'Bassi, Tseng-Chung Lee
  • Patent number: 10126760
    Abstract: A system for delivering pulses of a desired mass of gas to a tool, comprising: a mass flow controller including flow sensor, a control valve and a dedicated controller configured and arranged to receive a recipe of a sequence of steps for opening and closing the control valve so as to deliver as sequence of gas pulses as a function of the recipe. The mass flow controller is configured and arranged so as to operate in either one of at least two modes: as a traditional mass flow controller (MFC) mode or in a pulse gas delivery (PGD) mode.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: November 13, 2018
    Assignee: MKS Instruments, Inc.
    Inventors: Junhua Ding, Michael L'Bassi, Tseng-Chung Lee
  • Patent number: 10031004
    Abstract: A mass flow verifier (MFV) that is space-efficient and can verify flow rates for unknown fluids over a wide range of flow rates includes a chamber configured to receive a fluid, a critical flow nozzle connected to the chamber, and first and second pressure sensors that, respectively, detect fluid pressure in the chamber and upstream of the critical flow nozzle. A controller of the MFV is configured to verify flow rate of the fluid by, (i) at a first flow range, measuring a first flow rate based on a rate of rise in pressure of the fluid as detected by the first pressure sensor and determining a gas property function of the fluid based on pressures as detected by the first second pressure sensors, and (ii) at a second flow range, measuring a second flow rate based on pressure detected by the second pressure sensor and the determined gas property function.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: July 24, 2018
    Assignee: MKS Instruments, Inc.
    Inventors: Junhua Ding, Michael L'Bassi, Wayne Cole
  • Publication number: 20180172491
    Abstract: A mass flow verifier (MFV) that is space-efficient and can verify flow rates for unknown fluids over a wide range of flow rates includes a chamber configured to receive a fluid, a critical flow nozzle connected to the chamber, and first and second pressure sensors that, respectively, detect fluid pressure in the chamber and upstream of the critical flow nozzle. A controller of the MFV is configured to verify flow rate of the fluid by, (i) at a first flow range, measuring a first flow rate based on a rate of rise in pressure of the fluid as detected by the first pressure sensor and determining a gas property function of the fluid based on pressures as detected by the first second pressure sensors, and (ii) at a second flow range, measuring a second flow rate based on pressure detected by the second pressure sensor and the determined gas property function.
    Type: Application
    Filed: December 15, 2016
    Publication date: June 21, 2018
    Inventors: Junhua Ding, Michael L'Bassi, Wayne Cole