Patents by Inventor Michael L. Doster

Michael L. Doster has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220316280
    Abstract: A downhole tool comprising a bit body and a plurality of blades. Each blade having at least one cutting element disposed within the blade. Each cutting element comprising a substrate and a poly crystalline diamond material affixed to the substrate at an interface. The poly crystalline diamond material comprising a raised cutting surface comprising at least two cutting edges, a recess in a center of the raised cutting surface, and transition surfaces between the at least two cutting edges of the raised cutting surface and a side surface of the cutting element. The disclosure also includes a method of manufacturing a downhole tool comprising: forming a drill bit, blades, and cutting elements. Forming the cutting elements comprises forming a raised cutting surface comprising at least two cutting edges, forming a recess in a center of the raised cutting surface and forming transition surfaces between the raised cutting surface and a side surface of the cutting element.
    Type: Application
    Filed: February 5, 2020
    Publication date: October 6, 2022
    Inventor: Michael L. Doster
  • Publication number: 20220251905
    Abstract: A cutting element for downhole drilling and related earth-boring tool for downhole drilling. The cutting element may include a substrate and a polycrystalline diamond material affixed to the substrate at an interface. The polycrystalline diamond material may include a raised cutting surface having at least two cutting edges, and first transition surfaces between the at least two cutting edges of the raised cutting surface and a side surface of the cutting element. The first transition surfaces may include multiple planar surfaces.
    Type: Application
    Filed: February 4, 2022
    Publication date: August 11, 2022
    Inventors: Stephen Duffy, Nicholas J. Lyons, Michael L. Doster
  • Patent number: 11229989
    Abstract: An earth-boring tool having at least one cutting element with a multi-friction cutting face provides for the steering of formation cuttings as the cuttings slide across the cutting face. The multi-friction cutting element includes a diamond table bonded to a substrate of superabrasive material. The diamond table has a cutting face formed thereon with a cutting edge extending along a periphery of the cutting face. The cutting face has a first area having an average surface finish roughness less than an average surface finish roughness of a second area of the cutting face, the two areas separated by a boundary having a proximal end proximate a tool crown and a distal end remote from the tool crown.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: January 25, 2022
    Assignee: BAKER HUGHES HOLDINGS LLC
    Inventors: Juan Miguel Bilen, Anthony A. DiGiovanni, Chih C. Lin, Suresh G. Patel, Rudolf Carl Pessier, Danny E. Scott, Michael L. Doster
  • Patent number: 10221629
    Abstract: A polycrystalline super hard construction has a body of PCD material and a plurality of interstitial regions between inter-bonded diamond grains forming the PCD material. The body also has a first region substantially free of a solvent/catalyzing material which extends a depth from a working surface into the body of PCD material. A second region remote from the working surface includes solvent/catalyzing material in a plurality of the interstitial regions. A chamfer extends between the working surface and a peripheral side surface of the body of PCD material. The chamfer has a height which is the length along a plane perpendicular to the plane along which the working surface extends between the point of intersection of the chamfer with the working surface and the point of intersection of the chamfer and the peripheral side surface of the body of PCD material. The depth of the first region is greater than the height of the chamfer.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: March 5, 2019
    Assignee: Element Six Limited
    Inventors: Nedret Can, Habib Saridikmen, Roger William Nigel Nilen, Michael L. Doster, Anthony A. DiGiovanni, Matthew R. Isbell, Nicholas J. Lyons, Derek L. Nelms, Danny E. Scott
  • Patent number: 10094173
    Abstract: Polycrystalline compact tables for cutting elements include regions of grains of super hard material. One region of grains (“first grains”) and another region of grains (“second grains”) have different properties, such as different average grain sizes, different super hard material volume densities, or both. The region of first grains and the region of second grains adjoin one another at grain interfaces that may include a curved portion in a vertical cross-section of the table. In some embodiments, discrete regions of the first grains may be vertically disposed between discrete regions of the second grains. As such, the tables have ordered grain regions of different properties that may inhibit delamination and crack propagation through the table when used in conjunction with a cutting element. Methods of forming the tables include forming the regions and subjecting the grains to a high-pressure, high-temperature process to sinter the grains.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: October 9, 2018
    Assignee: Baker Hughes Incorporated
    Inventors: Danny E. Scott, Michael L. Doster, Anthony A. DiGiovanni
  • Publication number: 20180252044
    Abstract: An earth-boring tool includes a body comprising a pocket in a leading end thereof for accepting at least a portion of a bearing element assembly. A bearing element assembly may be disposed within the pocket, and the bearing element assembly may include a retaining element at least partially disposed in a groove in a sidewall of the pocket and a bearing element. The bearing element may include a distal end having a bearing surface, a proximal end, and a side surface between the distal end and the proximal end, the side surface comprising a feature configured to abut the retaining element, wherein mechanical interference between the feature and the retaining element axially retains the bearing element within the pocket. Methods include disengaging a mechanical retention device retaining a bearing element within a pocket in a body of the earth-boring tool, and removing the bearing element from the pocket.
    Type: Application
    Filed: May 7, 2018
    Publication date: September 6, 2018
    Inventors: Brian E. Miller, Michael L. Doster, Kenneth R. Evans, Jason E. Hoines, Oliver Matthews, Chaitanya K. Vempati
  • Publication number: 20180043509
    Abstract: An earth-boring tool having at least one cutting element with a multi-friction cutting face provides for the steering of formation cuttings as the cuttings slide across the cutting face. The multi-friction cutting element includes a diamond table bonded to a substrate of superabrasive material. The diamond table has a cutting face formed thereon with a cutting edge extending along a periphery of the cutting face. The cutting face has a first area having an average surface finish roughness less than an average surface finish roughness of a second area of the cutting face, the two areas separated by a boundary having a proximal end proximate a tool crown and a distal end remote from the tool crown.
    Type: Application
    Filed: October 25, 2017
    Publication date: February 15, 2018
    Inventors: Juan Miguel Bilen, Anthony A. DiGiovanni, Chih C. Lin, Suresh G. Patel, Rudolf Carl Pessier, Danny E. Scott, Michael L. Doster
  • Patent number: 9821437
    Abstract: An earth-boring tool having at least one cutting element with a multi-friction cutting face provides for the steering of formation cuttings as the cuttings slide across the cutting face. The multi-friction cutting element includes a diamond table bonded to a substrate of superabrasive material. The diamond table has a cutting face formed thereon with a cutting edge extending along a periphery of the cutting face. The cutting face has a first area having an average surface finish roughness less than an average surface finish roughness of a second area of the cutting face, the two areas separated by a boundary having a proximal end proximate a tool crown and a distal end remote from the tool crown.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: November 21, 2017
    Assignee: Baker Hughes Incorporated
    Inventors: Juan Miguel Bilen, Anthony A. DiGiovanni, Chih C. Lin, Suresh G. Patel, Rudolf Carl Pessier, Danny E. Scott, Michael L. Doster
  • Publication number: 20160348445
    Abstract: Polycrystalline compact tables for cutting elements include regions of grains of super hard material. One region of grains (“first grains”) and another region of grains (“second grains”) have different properties, such as different average grain sizes, different super hard material volume densities, or both. The region of first grains and the region of second grains adjoin one another at grain interfaces that may include a curved portion in a vertical cross-section of the table. In some embodiments, discrete regions of the first grains may be vertically disposed between discrete regions of the second grains. As such, the tables have ordered grain regions of different properties that may inhibit delamination and crack propagation through the table when used in conjunction with a cutting element. Methods of forming the tables include forming the regions and subjecting the grains to a high-pressure, high-temperature process to sinter the grains.
    Type: Application
    Filed: August 15, 2016
    Publication date: December 1, 2016
    Inventors: Danny E. Scott, Michael L. Doster, Anthony A. DiGiovanni
  • Patent number: 9428967
    Abstract: Polycrystalline compact tables for cutting elements include regions of grains of super hard material. One region of grains (“first grains”) and another region of grains (“second grains”) have different properties, such as different average grain sizes, different super hard material volume densities, or both. The region of first grains and the region of second grains adjoin one another at grain interfaces that may include a curved portion in a vertical cross-section of the table. In some embodiments, discrete regions of the first grains may be vertically disposed between discrete regions of the second grains. As such, the tables have ordered grain regions of different properties that may inhibit delamination and crack propagation through the table when used in conjunction with a cutting element. Methods of forming the tables include forming the regions and subjecting the grains to a high-pressure, high-temperature process to sinter the grains.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: August 30, 2016
    Assignee: Baker Hughes Incorporated
    Inventors: Danny E. Scott, Michael L. Doster, Anthony A. DiGiovanni
  • Patent number: 9359825
    Abstract: A rotary drag bit includes a primary cutter row comprising at least one primary cutter mounted on a blade, at least some cutters in the primary cutter row having a portion of a cutting surface thereof covered by a portion of the blade. A backup cutter row comprising at least one cutter may also be included, and at least a portion of a cutting surface of at least some cutters in the backup cutter row is covered by a portion of the blade. Enhanced support for cutters is provided against impact loading.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: June 7, 2016
    Assignee: Baker Hughes Incorporated
    Inventors: David Gavia, Floyd C. Felderhoff, Matthew R. Isbell, Michael L. Doster
  • Patent number: 9267333
    Abstract: A rotary drag bit for drilling subterranean formations includes a bit body having a face extending from a centerline to a gage. A plurality of blades may be disposed on the face, and may generally extend radially outwardly toward the gage. The bit may further include a plurality of discrete impregnated cutting posts, each of which may extend outwardly from an associated blade. Each discrete impregnated cutting post angles generally toward a front edge of the associated blade and generally toward the intended direction of rotation of the bit. The rotary drag bit may further include a plurality of matrix pockets disposed on the blades. The discrete impregnated cutting posts may be housed within corresponding matrix pockets.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: February 23, 2016
    Assignee: Baker Hughes Incorporated
    Inventor: Michael L. Doster
  • Publication number: 20150368976
    Abstract: A drill bit includes a bit head having a front face, a plurality of blades extending along at least a portion of the front face, the blades comprising cutters, a cavity for forming a core, the cavity being approximately centrally located in the front face of the bit between adjacent end portions of the plurality of blades, and a removable core breaking device disposed within the cavity. The core breaking device is configured to project toward the front face a distance to engage and destroy the so formed core into multiple smaller fragments prior to a core length exceeding a core diameter, or project toward the front face a distance to engage and break the so formed core into a substantially unitary core sample.
    Type: Application
    Filed: June 19, 2014
    Publication date: December 24, 2015
    Inventors: James W. LANGFORD, Michael L. DOSTER
  • Publication number: 20150330153
    Abstract: An earth-boring tool includes a body comprising a pocket in a leading end thereof for accepting at least a portion of a bearing element assembly. A bearing element assembly may be disposed within the pocket, and the bearing element assembly may include a retaining element at least partially disposed in a groove in a sidewall of the pocket and a bearing element. The bearing element may include a distal end having a bearing surface, a proximal end, and a side surface between the distal end and the proximal end, the side surface comprising a feature configured to abut the retaining element, wherein mechanical interference between the feature and the retaining element axially retains the bearing element within the pocket. Methods include disengaging a mechanical retention device retaining a bearing element within a pocket in a body of the earth-boring tool, and removing the bearing element from the pocket.
    Type: Application
    Filed: May 13, 2014
    Publication date: November 19, 2015
    Inventors: Brian E. Miller, Michael L. Doster, Do Van Do, Kenneth R. Evans, Juan Miguel Bilen, Steven C. Russell, Jason E. Hoines, Oliver Matthews, R. Keith Glasgow, JR., Chaitanya K. Vempati
  • Patent number: 9140072
    Abstract: Cutting elements for earth-boring tools may comprise a substrate, a polycrystalline table comprising superhard material secured to the substrate at an end of the substrate, and a non-planar interface defined between the polycrystalline table and the substrate. The non-planar interface may comprise a cross-shaped groove extending into one of the substrate and the polycrystalline table and L-shaped grooves extending into the other of the substrate and the polycrystalline table proximate corners of the cross-shaped groove. Transitions between surfaces defining the non-planar interface may be rounded. Methods of forming cutting elements for earth-boring tools may comprise forming a substrate to have a non-planar end. The non-planar end of the substrate may be provided adjacent particles of superhard material to impart an inverse shape to the particles. The particles may be sintered to form a polycrystalline table, with a non-planar interface defined between the substrate and the polycrystalline table.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: September 22, 2015
    Assignee: BAKER HUGHES INCORPORATED
    Inventors: Derek L. Nelms, Michael L. Doster, Jarod DeGeorge, Danielle M. Fuselier
  • Publication number: 20150190904
    Abstract: An earth-boring tool having at least one cutting element with a multi-friction cutting face provides for the steering of formation cuttings as the cuttings slide across the cutting face. The multi-friction cutting element includes a diamond table bonded to a substrate of superabrasive material. The diamond table has a cutting face formed thereon with a cutting edge extending along a periphery of the cutting face. The cutting face has a first area having an average surface finish roughness less than an average surface finish roughness of a second area of the cutting face, the two areas separated by a boundary having a proximal end proximate a tool crown and a distal end remote from the tool crown.
    Type: Application
    Filed: March 17, 2015
    Publication date: July 9, 2015
    Inventors: Juan Miguel Bilen, Anthony A. DiGiovanni, Chih C. Lin, Suresh G. Patel, Rudolf Carl Pessier, Danny E. Scott, Michael L. Doster
  • Patent number: 8991525
    Abstract: An earth-boring tool having at least one cutting element with a multi-friction cutting face provides for the steering of formation cuttings as the cuttings slide across the cutting face. The multi-friction cutting element includes a diamond table bonded to a substrate of superabrasive material. The diamond table has a cutting face formed thereon with a cutting edge extending along a periphery of the cutting face. The cutting face has a first area having an average surface finish roughness less than an average surface finish roughness of a second area of the cutting face, the two areas separated by a boundary having a proximal end proximate a tool crown and a distal end remote from the tool crown.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: March 31, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Juan Miguel Bilen, Anthony A. DiGiovanni, Chih C. Lin, Suresh G. Patel, Rudolf Carl Pessier, Danny E. Scott, Michael L. Doster
  • Publication number: 20140246252
    Abstract: Polycrystalline compact tables for cutting elements include regions of grains of super hard material. One region of grains (“first grains”) and another region of grains (“second grains”) have different properties, such as different average grain sizes, different super hard material volume densities, or both. The region of first grains and the region of second grains adjoin one another at grain interfaces that may include a curved portion in a vertical cross-section of the table. In some embodiments, discrete regions of the first grains may be vertically disposed between discrete regions of the second grains. As such, the tables have ordered grain regions of different properties that may inhibit delamination and crack propagation through the table when used in conjunction with a cutting element. Methods of forming the tables include forming the regions and subjecting the grains to a high-pressure, high-temperature process to sinter the grains.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 4, 2014
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Danny E. Scott, Michael L. Doster, Anthony A. DiGiovanni
  • Publication number: 20140238753
    Abstract: Cutting elements for earth-boring tools may comprise a substrate, a polycrystalline table comprising superhard material secured to the substrate at an end of the substrate, and a non-planar interface defined between the polycrystalline table and the substrate. The non-planar interface may comprise a cross-shaped groove extending into one of the substrate and the polycrystalline table and L-shaped grooves extending into the other of the substrate and the polycrystalline table proximate corners of the cross-shaped groove. Transitions between surfaces defining the non-planar interface may be rounded. Methods of forming cutting elements for earth-boring tools may comprise forming a substrate to have a non-planar end. The non-planar end of the substrate may be provided adjacent particles of superhard material to impart an inverse shape to the particles. The particles may be sintered to form a polycrystalline table, with a non-planar interface defined between the substrate and the polycrystalline table.
    Type: Application
    Filed: February 28, 2013
    Publication date: August 28, 2014
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Derek L. Nelms, Michael L. Doster, Jarod DeGeorge, Danielle M. Fuselier
  • Publication number: 20140190752
    Abstract: A rotary drag bit for drilling subterranean formations includes a bit body having a face extending from a centerline to a gage. A plurality of blades may be disposed on the face, and may generally extend radially outwardly toward the gage. The bit may further include a plurality of discrete impregnated cutting posts, each of which may extend outwardly from an associated blade. Each discrete impregnated cutting post angles generally toward a front edge of the associated blade and generally toward the intended direction of rotation of the bit. The rotary drag bit may further include a plurality of matrix pockets disposed on the blades. The discrete impregnated cutting posts may be housed within corresponding matrix pockets.
    Type: Application
    Filed: March 10, 2014
    Publication date: July 10, 2014
    Applicant: Baker Hughes Incorporated
    Inventor: Michael L. Doster