Patents by Inventor Michael L. Roukes

Michael L. Roukes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11921141
    Abstract: A graphene-based broadband radiation sensor and methods for operation thereof are disclosed. The radiation sensor includes an electrical signal path for carrying electrical signals and one or more resonance structures connected to the electrical signal path. Each resonance structure includes a resonator having a resonant frequency. Each resonance structure also includes a graphene junction connected in series with the resonator, the graphene junction including a graphene layer and having an impedance that is dependent on a temperature of the graphene layer. Each resonance structure further includes a heating element that is thermally coupled to the graphene layer and is configured to receive an incident photon, where the temperature of the graphene layer increases in response to the heating element receiving the incident photon.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: March 5, 2024
    Assignee: California Institute of Technology
    Inventors: Raj M. Katti, Harpreet Singh Arora, Keith C. Schwab, Michael L Roukes, Stevan Nadj-Perge
  • Patent number: 11624715
    Abstract: A NEMS readout system includes a sensor array comprising a plurality of sensors. Each sensor of the plurality of sensors including a resonator with frequency characteristics different from the resonator of each other sensor of the plurality of sensors. A readout signal indicative of a plurality of output signals is collected from the sensor array. Each output signal of the plurality of output signals corresponding to one of the plurality of sensors. An analysis of the plurality of output signals is performed to identify a plurality of resonant frequencies and to detect a frequency shift associated with at least one of the plurality of resonant frequencies.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: April 11, 2023
    Assignee: California Institute of Technology
    Inventors: Michael L. Roukes, Chung Wah Fon, Ewa Rej
  • Patent number: 11621671
    Abstract: A nanoelectromechanical systems (NEMS) oscillator network and methods for its operation are disclosed. The NEMS oscillator network includes one or more network inputs configured to receive one or more input signals. The NEMS oscillator network also includes a plurality of NEMS oscillators coupled to the one or more network inputs. Each of the plurality of NEMS oscillators includes a NEMS resonator and produces a radio frequency (RF) output signal that oscillates at a particular frequency and a particular phase. The NEMS oscillator network further includes a plurality of connections that interconnect the plurality of NEMS oscillators. The NEMS oscillator network further includes one or more network outputs coupled to the plurality of NEMS oscillators and configured to output one or more output signals.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: April 4, 2023
    Assignee: California Institute of Technology
    Inventors: Michael L. Roukes, Matthew H. Matheny, Chung Wah Fon
  • Publication number: 20220094303
    Abstract: A nanoelectromechanical systems (NEMS) oscillator network and methods for its operation are disclosed. The NEMS oscillator network includes one or more network inputs configured to receive one or more input signals. The NEMS oscillator network also includes a plurality of NEMS oscillators coupled to the one or more network inputs. Each of the plurality of NEMS oscillators includes a NEMS resonator and produces a radio frequency (RF) output signal that oscillates at a particular frequency and a particular phase. The NEMS oscillator network further includes a plurality of connections that interconnect the plurality of NEMS oscillators. The NEMS oscillator network further includes one or more network outputs coupled to the plurality of NEMS oscillators and configured to output one or more output signals.
    Type: Application
    Filed: December 6, 2021
    Publication date: March 24, 2022
    Applicant: California Institute of Technology
    Inventors: Michael L. Roukes, Matthew H. Matheny, Chung Wah Fon
  • Publication number: 20220050064
    Abstract: A NEMS readout system includes a sensor array comprising a plurality of sensors. Each sensor of the plurality of sensors including a resonator with frequency characteristics different from the resonator of each other sensor of the plurality of sensors. A readout signal indicative of a plurality of output signals is collected from the sensor array. Each output signal of the plurality of output signals corresponding to one of the plurality of sensors. An analysis of the plurality of output signals is performed to identify a plurality of resonant frequencies and to detect a frequency shift associated with at least one of the plurality of resonant frequencies.
    Type: Application
    Filed: October 27, 2021
    Publication date: February 17, 2022
    Applicant: California Institute of Technology
    Inventors: Michael L. Roukes, Chung Wah Fon, Ewa Rej
  • Patent number: 11218115
    Abstract: A nanoelectromechanical systems (NEMS) oscillator network and methods for its operation are disclosed. The NEMS oscillator network includes one or more network inputs configured to receive one or more input signals. The NEMS oscillator network also includes a plurality of NEMS oscillators coupled to the one or more network inputs. Each of the plurality of NEMS oscillators includes a NEMS resonator and produces a radio frequency (RF) output signal that oscillates at a particular frequency and a particular phase. The NEMS oscillator network further includes a plurality of connections that interconnect the plurality of NEMS oscillators. The NEMS oscillator network further includes one or more network outputs coupled to the plurality of NEMS oscillators and configured to output one or more output signals.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: January 4, 2022
    Assignee: California Institute of Technology
    Inventors: Michael L. Roukes, Matthew H. Matheny, Chung Wah Fon
  • Patent number: 11187663
    Abstract: A NEMS readout system includes a sensor array comprising a plurality of sensors. Each sensor of the plurality of sensors including a resonator with frequency characteristics different from the resonator of each other sensor of the plurality of sensors. A readout signal indicative of a plurality of output signals is collected from the sensor array. Each output signal of the plurality of output signals corresponding to one of the plurality of sensors. An analysis of the plurality of output signals is performed to identify a plurality of resonant frequencies and to detect a frequency shift associated with at least one of the plurality of resonant frequencies.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: November 30, 2021
    Assignee: California Institute of Technology
    Inventors: Michael L. Roukes, Chung Wah Fon, Ewa Rej
  • Publication number: 20210311101
    Abstract: A graphene-based broadband radiation sensor and methods for operation thereof are disclosed. The radiation sensor includes an electrical signal path for carrying electrical signals and one or more resonance structures connected to the electrical signal path. Each resonance structure includes a resonator having a resonant frequency. Each resonance structure also includes a graphene junction connected in series with the resonator, the graphene junction including a graphene layer and having an impedance that is dependent on a temperature of the graphene layer. Each resonance structure further includes a heating element that is thermally coupled to the graphene layer and is configured to receive an incident photon, where the temperature of the graphene layer increases in response to the heating element receiving the incident photon.
    Type: Application
    Filed: March 3, 2021
    Publication date: October 7, 2021
    Applicant: California Institute of Technology
    Inventors: Raj M. Katti, Harpreet Singh Arora, Keith C. Schwab, Michael L. Roukes, Stevan Nadj-Perge
  • Publication number: 20200350862
    Abstract: A nanoelectromechanical systems (NEMS) oscillator network and methods for its operation are disclosed. The NEMS oscillator network includes one or more network inputs configured to receive one or more input signals. The NEMS oscillator network also includes a plurality of NEMS oscillators coupled to the one or more network inputs. Each of the plurality of NEMS oscillators includes a NEMS resonator and produces a radio frequency (RF) output signal that oscillates at a particular frequency and a particular phase. The NEMS oscillator network further includes a plurality of connections that interconnect the plurality of NEMS oscillators. The NEMS oscillator network further includes one or more network outputs coupled to the plurality of NEMS oscillators and configured to output one or more output signals.
    Type: Application
    Filed: April 30, 2020
    Publication date: November 5, 2020
    Inventors: Michael L. Roukes, Matthew H. Matheny, Chung Wah Fon
  • Publication number: 20200256809
    Abstract: A NEMS readout system includes a sensor array comprising a plurality of sensors. Each sensor of the plurality of sensors including a resonator with frequency characteristics different from the resonator of each other sensor of the plurality of sensors. A readout signal indicative of a plurality of output signals is collected from the sensor array. Each output signal of the plurality of output signals corresponding to one of the plurality of sensors. An analysis of the plurality of output signals is performed to identify a plurality of resonant frequencies and to detect a frequency shift associated with at least one of the plurality of resonant frequencies.
    Type: Application
    Filed: February 11, 2020
    Publication date: August 13, 2020
    Inventors: Michael L. Roukes, Chung Wah Fon, Ewa Rej
  • Patent number: 10638933
    Abstract: Method and apparatus for illuminating and imaging tissue is provided. In one version, the method includes illuminating a volume of a tissue with photons from a three-dimensional array of optical emitters inserted into the tissue. In another version, the method includes detecting photons from a volume of a tissue using a three-dimensional array of optical detectors inserted into the tissue. A probe device for illuminating tissue and/or detecting photons emitted from tissue includes elongated microsized probes containing optical emitters and optical detectors in a three dimensional array.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: May 5, 2020
    Assignee: California Institute of Technology
    Inventor: Michael L. Roukes
  • Patent number: 10471273
    Abstract: A neural probe for light stimulation of a tissue is provided. The probe includes a base that has light supplying circuitry, and one or more elongated microsized shanks extending from the base. Each shank has a longitudinal axis and includes one or more waveguides extending along the shank's length, with the waveguides being optically connected to the light supplying circuitry. In addition, each of the waveguides is optically connected to a diffraction grating coupler that emits a light beam from the shank when light passes from the base through the waveguide and to the diffraction grating coupler. The emitted light beam has a propagation direction at a set angle relative to an axis that is substantially normal to the longitudinal axis of the shank. A method for stimulating a tissue using the neural probe is also provided.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: November 12, 2019
    Assignee: California Institute of Technology
    Inventors: Eran Segev, Laurent Moreaux, Trevor M. Fowler, Andrei Faraon, Michael L. Roukes
  • Patent number: 10381206
    Abstract: A hybrid mass spectrometer comprising: an ion source for generating ions from a sample, a first mass spectral system comprising a nanoelectromechanical mass spectral (NEMS-MS) system, a second mass spectral system including at least one mass analyzer adapted to separate the charged particles according to their mass-to-charge ratios, and an integration zone coupling the first and second mass spectral systems, the integration zone including at least one directional device for controllably routing the ions to a selected one or both of the first and second mass spectral systems for analysis thereby. The second system can be an orbital electrostatic trap system. The ion beam can be electrically directed to one or the other system by ion optics. A chip with resonators can be used with cooling. Uses include analysis of large mass complexes found in biological systems, native single molecule analysis, and size and shape analysis.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: August 13, 2019
    Assignees: California Institute of Technology, Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Michael L. Roukes, Alexander A. Makarov
  • Patent number: 10216698
    Abstract: A device for analyzing a fluid, including a layer including a plurality of sensors of MEMS and/or NEMS type, a layer including a mechanism controlling the sensor and for processing information transmitted by the sensors, the control and processing mechanism being electrically connected to the detectors, and a layer positioned on the layer including the sensors on a side of a face including the sensors including a mechanism spatially and temporally distributing the fluid on the sensors.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: February 26, 2019
    Assignees: Commissariat Ă  l 'Energie Atomique et aux Energies Alternatives, California Institute of Technology
    Inventors: Thomas Ernst, Philippe Andreucci, Eric Colinet, Laurent Duraffourg, Edward B. Myers, Michael L. Roukes
  • Patent number: 10168292
    Abstract: An article comprising: an array of calorimeter devices, wherein the device comprises: at least one fluidic enclosure disposed on a microfluidic chip, wherein the fluidic enclosure is substantially gas impermeable; at least one first chamber and at least one second chamber, wherein the first chamber and the second chamber are disposed within and enclosed by the fluidic enclosure, wherein the first chamber and the second chamber are not vacuum encapsulated; at least two microfluidic channels connected to the first chamber and at least two microfluidic channels connected to the second chamber; and at least one thermal sensor disposed between the chip and the first and second chambers, wherein the thermal sensor is adapted to measure a temperature differential between the first and second chambers. Examples include DSC and TSA devices. Biological binding and melting experiments can be done with high sensitivity.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 1, 2019
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Chung Wah Fon, Michael L. Roukes
  • Publication number: 20180005809
    Abstract: A hybrid mass spectrometer comprising: an ion source for generating ions from a sample, a first mass spectral system comprising a nanoelectromechanical mass spectral (NEMS-MS) system, a second mass spectral system including at least one mass analyzer adapted to separate the charged particles according to their mass-to-charge ratios, and an integration zone coupling the first and second mass spectral systems, the integration zone including at least one directional device for controllably routing the ions to a selected one or both of the first and second mass spectral systems for analysis thereby. The second system can be an orbital electrostatic trap system. The ion beam can be electrically directed to one or the other system by ion optics. A chip with resonators can be used with cooling. Uses include analysis of large mass complexes found in biological systems, native single molecule analysis, and size and shape analysis.
    Type: Application
    Filed: January 22, 2016
    Publication date: January 4, 2018
    Inventors: Michael L. ROUKES, Alexander A. MAKAROV
  • Patent number: 9841408
    Abstract: A system for analyzing a gas mixture, including at least one chromatography column, a mechanism injecting the mixture into the column, and a mechanism detecting compound(s) forming the gas mixture, the detection mechanism including at least one detector of nanosensor type of an outlet of the column and a detector of nanosensor type in the column, capable of detecting passage of the compounds. It is then possible to determine the velocity of each of the compounds within the system.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: December 12, 2017
    Assignees: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Pierre Puget, Edward B. Myers, Michael L. Roukes
  • Publication number: 20170347888
    Abstract: Method and apparatus for illuminating and imaging tissue is provided. In one version, the method includes illuminating a volume of a tissue with photons from a three-dimensional array of optical emitters inserted into the tissue. In another version, the method includes detecting photons from a volume of a tissue using a three-dimensional array of optical detectors inserted into the tissue. A probe device for illuminating tissue and/or detecting photons emitted from tissue includes elongated microsized probes containing optical emitters and optical detectors in a three dimensional array.
    Type: Application
    Filed: May 22, 2017
    Publication date: December 7, 2017
    Inventor: Michael L. Roukes
  • Patent number: 9660654
    Abstract: Synchronization of oscillators based on anharmonic nanoelectromechanical resonators. Experimental implimentation allows for unprecedented observation and control of parameters governing the dynamics of synchronization. Close quantitative agreement is found between experimental data and theory describing reactively coupled Duffing resonators with fully saturated feedback gain. In the synchonized state, a significant reduction in the phase noise of the oscillators is demonstrated, which is key for applications such as sensors and clocks. Oscillator networks constructed from nanomechanical resonators form an important laboratory to commercialize and study synchronization—given their high-quality factors, small footprint, and ease of co-integration with modern electronic signal processing technologies. Networks can be made including one-, two-, and three-dimensional networks. Triangular and square lattices can be made.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: May 23, 2017
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Matthew Matheny, Michael L. Roukes, Michael C. Cross, Luis Guillermo Villanueva Torrijo, Rassul Karabalin
  • Publication number: 20170106204
    Abstract: A neural probe for light stimulation of a tissue is provided. The probe includes a base that has light supplying circuitry, and one or more elongated microsized shanks extending from the base. Each shank has a longitudinal axis and includes one or more waveguides extending along the shank's length, with the waveguides being optically connected to the light supplying circuitry. In addition, each of the waveguides is optically connected to a diffraction grating coupler that emits a light beam from the shank when light passes from the base through the waveguide and to the diffraction grating coupler. The emitted light beam has a propagation direction at a set angle relative to an axis that is substantially normal to the longitudinal axis of the shank. A method for stimulating a tissue using the neural probe is also provided.
    Type: Application
    Filed: October 17, 2016
    Publication date: April 20, 2017
    Inventors: Eran Segev, Laurent Moreaux, Trevor M. Fowler, Andrei Faraon, Michael L. Roukes