Patents by Inventor Michael L. Wesley

Michael L. Wesley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210125274
    Abstract: A system for automatic savings and debt paydown includes a first and second bank accounts belonging to a user and a financial account belonging to the user, wherein the financial account may be one of the first bank account or second bank account. A user interface provides the user with an option to select one of a savings mode or a debt paydown mode. A preset amount of monetary funds is automatically transferred from the first bank account to the second bank account when a transaction involving the financial account occurs. Moreover, if the debt paydown mode has been selected by the user via the user interface, at the end of a set period, all monetary funds transferred from the first bank account to the second bank account as a result of transactions involving the financial account during that period are transferred to a debt payee specified by the user.
    Type: Application
    Filed: October 23, 2020
    Publication date: April 29, 2021
    Inventors: Elizabeth Ann Molloy de Coluby, Michael L. Wesley, Robert M. Biggar, Philip M. Jackey, William Samuel Sellery
  • Patent number: 10676845
    Abstract: A composite rod for use in various applications, such as electrical cables (e.g., high voltage transmission cables), power umbilicals, tethers, ropes, and a wide variety of other structural members, is provided. The rod includes a core that is formed from a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix. The present inventors have discovered that the degree to which the rovings are impregnated with the thermoplastic polymer matrix can be significantly improved through selective control over the impregnation process, and also through control over the degree of compression imparted to the rovings during formation and shaping of the rod, as well as the calibration of the final rod geometry. Such a well impregnated rod has a very small void fraction, which leads to excellent strength properties. Notably, the desired strength properties may be achieved without the need for different fiber types in the rod.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: June 9, 2020
    Assignee: Ticona LLC
    Inventors: Sherri M. Nelson, David W. Eastep, Timothy L. Tibor, Timothy A. Regan, Michael L. Wesley, Richard Stiehm
  • Publication number: 20180197658
    Abstract: The present invention discloses electrical cables containing a cable core and a plurality of conductive elements surrounding the cable core. The cable core contains at least one composite core, and each composite core contains a rod which contains a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix, and surrounded by a capping layer.
    Type: Application
    Filed: March 9, 2018
    Publication date: July 12, 2018
    Inventors: Allan Daniel, Paul Springer, Yuhsin Hawig, Mark Lancaster, David W. Eastep, Sherri M. Nelson, Tim Tibor, Tim Regan, Michael L. Wesley
  • Patent number: 9919481
    Abstract: A structural member that contains a solid lineal profile that is formed from a plurality of consolidated ribbons is provided. Each of the ribbons includes unidirectionally aligned continuous fibers embedded within a thermoplastic polymer matrix. The continuous fiber ribbons are laminated together during pultrusion to form an integral solid profile having very high tensile strength properties. Contrary to conventional wisdom, the present inventors have discovered that careful control over certain aspects of the pultrusion process can allow such high strength profiles to be readily formed without adversely impacting the pultrusion apparatus.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: March 20, 2018
    Assignee: Ticona LLC
    Inventors: Sherri M. Nelson, David W. Eastep, Timothy A. Regan, Michael L. Wesley, Richard Steihm
  • Publication number: 20170256338
    Abstract: The present invention discloses electrical cables containing a cable core and a plurality of conductive elements surrounding the cable core. The cable core contains at least one composite core, and each composite core contains a rod which contains a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix, and surrounded by a capping layer.
    Type: Application
    Filed: May 16, 2017
    Publication date: September 7, 2017
    Inventors: Allan Daniel, Paul Springer, Yuhsin Hawig, Mark Lancaster, David W. Eastep, Sherri M. Nelson, Tim Tibor, Tim Regan, Michael L. Wesley
  • Patent number: 9685257
    Abstract: The present invention discloses electrical cables containing a cable core and a plurality of conductive elements surrounding the cable core. The cable core contains at least one composite core, and each composite core contains a rod which contains a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix, and surrounded by a capping layer.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: June 20, 2017
    Assignee: Southwire Company, LLC
    Inventors: Allan Daniel, Paul Springer, Yuhsin Hawig, Mark Lancaster, David W. Eastep, Sherri M. Nelson, Tim Tibor, Tim Regan, Michael L. Wesley
  • Patent number: 9659680
    Abstract: A composite core for use in electrical cables, such as high voltage transmission cables is provided. The composite core contains at least one rod that includes a continuous fiber component surrounded by a capping layer. The continuous fiber component is formed from a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix. The present inventors have discovered that the degree to which the rovings are impregnated with the thermoplastic polymer matrix can be significantly improved through selective control over the impregnation process, and also through control over the degree of compression imparted to the rovings during formation and shaping of the rod, as well as the calibration of the final rod geometry. Such a well impregnated rod has a very small void fraction, which leads to excellent strength properties. Notably, the desired strength properties may be achieved without the need for different fiber types in the rod.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: May 23, 2017
    Assignee: Ticona LLC
    Inventors: Sherri M. Nelson, David W. Eastep, Timothy L. Tibor, Timothy A. Regan, Michael L. Wesley, Richard Steihm
  • Publication number: 20160351300
    Abstract: The present invention discloses electrical cables containing a cable core and a plurality of conductive elements surrounding the cable core. The cable core contains at least one composite core, and each composite core contains a rod which contains a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix, and surrounded by a capping layer.
    Type: Application
    Filed: August 15, 2016
    Publication date: December 1, 2016
    Inventors: Allan Daniel, Paul Springer, Yuhsin Hawig, Mark Lancaster, David W. Eastep, Sherri M. Nelson, Tim Tibor, Tim Regan, Michael L. Wesley
  • Patent number: 9443635
    Abstract: The present invention discloses electrical cables containing a cable core and a plurality of conductive elements surrounding the cable core. The cable core contains at least one composite core, and each composite core contains a rod which contains a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix, and surrounded by a capping layer.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: September 13, 2016
    Assignee: Southwire Company, LLC
    Inventors: Allan Daniel, Paul Springer, Yuhsin Hawig, Mark Lancaster, David W. Eastep, Sherri M. Nelson, Tim Tibor, Tim Regan, Michael L. Wesley
  • Publication number: 20160201403
    Abstract: Sucker rod assemblies are provided. A sucker rod assembly includes one or more continuous fiber reinforced thermoplastic rods. Each rod has a core comprising a plurality of generally unidirectionally oriented continuous fibers embedded in a thermoplastic resin. A sucker rod assembly further includes a first end fitting and a second end fitting, at least one of which is connected to the plurality of continuous fiber reinforced thermoplastic rods. Each rod has an ultimate tensile strength of between approximately 280,000 pounds per square inch and approximately 370,000 pounds per square inch, and the continuous fibers have a ratio of ultimate tensile strength to mass per unit length of greater than about 1,000 Megapascals per gram per meter. The continuous fibers constitute from about 25 wt. % to about 80 wt. % of each rod, and the thermoplastic resin constitutes from about 20 wt. % to about 75 wt. % of each rod.
    Type: Application
    Filed: December 15, 2015
    Publication date: July 14, 2016
    Inventors: Ashish Sen, Michael L. Wesley, David W. Eastep
  • Publication number: 20160096335
    Abstract: A structural member that contains a solid lineal profile that is formed from a plurality of consolidated ribbons is provided. Each of the ribbons includes unidirectionally aligned continuous fibers embedded within a thermoplastic polymer matrix. The continuous fiber ribbons are laminated together during pultrusion to form an integral solid profile having very high tensile strength properties. Contrary to conventional wisdom, the present inventors have discovered that careful control over certain aspects of the pultrusion process can allow such high strength profiles to be readily formed without adversely impacting the pultrusion apparatus.
    Type: Application
    Filed: December 11, 2015
    Publication date: April 7, 2016
    Inventors: Sherri M. Nelson, David W. Eastep, Timothy A. Regan, Michael L. Wesley, Richard Steihm
  • Publication number: 20160035453
    Abstract: A composite core for use in electrical cables, such as high voltage transmission cables is provided. The composite core contains at least one rod that includes a continuous fiber component surrounded by a capping layer. The continuous fiber component is formed from a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix. The present inventors have discovered that the degree to which the rovings are impregnated with the thermoplastic polymer matrix can be significantly improved through selective control over the impregnation process, and also through control over the degree of compression imparted to the rovings during formation and shaping of the rod, as well as the calibration of the final rod geometry. Such a well impregnated rod has a very small void fraction, which leads to excellent strength properties. Notably, the desired strength properties may be achieved without the need for different fiber types in the rod.
    Type: Application
    Filed: October 15, 2015
    Publication date: February 4, 2016
    Inventors: Sherri M. Nelson, David W. Eastep, Timothy L. Tibor, Timothy A. Regan, Michael L. Wesley, Richard Steihm
  • Patent number: 9238347
    Abstract: A structural member that contains a solid lineal profile (516, 600, 700) that is formed from a plurality of consolidated ribbons (12). Each of the ribbons includes unidirectionally aligned continuous fibers embedded within a thermoplastic polymer matrix. The continuous fiber ribbons (12) are laminated together during pultrusion to form an integral solid profile (516, 600, 700) having very high tensile strength properties.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: January 19, 2016
    Assignee: Ticona LLC
    Inventors: Sherri M. Nelson, David W. Eastep, Timothy A. Regan, Michael L. Wesley, Richard Stiehm
  • Patent number: 9190184
    Abstract: A composite core for use in electrical cables, such as high voltage transmission cables is provided. The composite core contains at least one rod that includes a continuous fiber component surrounded by a capping layer. The continuous fiber component is formed from a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix. The present inventors have discovered that the degree to which the rovings are impregnated with the thermoplastic polymer matrix can be significantly improved through selective control over the impregnation process, and also through control over the degree of compression imparted to the rovings during formation and shaping of the rod, as well as the calibration of the final rod geometry. Such a well impregnated rod has a very small void fraction, which leads to excellent strength properties. Notably, the desired strength properties may be achieved without the need for different fiber types in the rod.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: November 17, 2015
    Assignee: Ticona LLC
    Inventors: Sherri M. Nelson, David W. Eastep, Timothy L. Tibor, Timothy A. Regan, Michael L. Wesley, Richard Stiehm
  • Publication number: 20150194238
    Abstract: The present invention discloses electrical cables containing a cable core and a plurality of conductive elements surrounding the cable core. The cable core contains at least one composite core, and each composite core contains a rod which contains a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix, and surrounded by a capping layer.
    Type: Application
    Filed: March 18, 2015
    Publication date: July 9, 2015
    Inventors: Allan Daniel, Paul Springer, Yuhsin Hawig, Mark Lancaster, David W. Eastep, Sherri M. Nelson, Tim Tibor, Tim Regan, Michael L. Wesley
  • Patent number: 9012781
    Abstract: The present invention discloses electrical cables containing a cable core and a plurality of conductive elements surrounding the cable core. The cable core contains at least one composite core, and each composite core contains a rod which contains a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix, and surrounded by a capping layer.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: April 21, 2015
    Assignee: Southwire Company, LLC
    Inventors: Allan Daniel, Paul Springer, Yuhsin Hawig, Mark Lancaster, David W. Eastep, Sherri M. Nelson, Tim Tibor, Tim Regan, Michael L. Wesley
  • Patent number: 8921692
    Abstract: An umbilical (600) for the transfer of fluids and/or electric current/signals, particularly between the sea surface and equipment deployed on the sea bed (e.g., in deep waters), is provided. The umbilical contains a plurality of elongated umbilical elements (e.g., two or more), such as a channel element (603), fluid pipe (604), electric conductor/wire (606) (e.g., optic fiber cable), armoring wire, etc., enclosed within an outer sheath (e.g., plastic sheath). The umbilical also contains at least one reinforcing rod (607) formed from a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: December 30, 2014
    Assignee: Ticona LLC
    Inventors: Sherri M. Nelson, David W. Eastep, Timothy A. Regan, Michael L. Wesley
  • Publication number: 20140106166
    Abstract: A composite rod for use in various applications, such as electrical cables (e.g., high voltage transmission cables), power umbilicals, tethers, ropes, and a wide variety of other structural members, is provided. The rod includes a core that is formed from a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix. The present inventors have discovered that the degree to which the rovings are impregnated with the thermoplastic polymer matrix can be significantly improved through selective control over the impregnation process, and also through control over the degree of compression imparted to the rovings during formation and shaping of the rod, as well as the calibration of the final rod geometry. Such a well impregnated rod has a very small void fraction, which leads to excellent strength properties. Notably, the desired strength properties may be achieved without the need for different fiber types in the rod.
    Type: Application
    Filed: April 11, 2012
    Publication date: April 17, 2014
    Applicant: Ticona LLC
    Inventors: Sherri M. Nelson, David W. Eastep, Timothy L. Tibor, Timothy A. Regan, Michael L. Wesley
  • Publication number: 20140102760
    Abstract: A composite core for use in electrical cables, such as high voltage transmission cables is provided. The composite core contains at least one rod that includes a continuous fiber component surrounded by a capping layer. The continuous fiber component is formed from a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix. The present inventors have discovered that the degree to which the rovings are impregnated with the thermoplastic polymer matrix can be significantly improved through selective control over the impregnation process, and also through control over the degree of compression imparted to the rovings during formation and shaping of the rod, as well as the calibration of the final rod geometry. Such a well impregnated rod has a very small void fraction, which leads to excellent strength properties. Notably, the desired strength properties may be achieved without the need for different fiber types in the rod.
    Type: Application
    Filed: April 11, 2012
    Publication date: April 17, 2014
    Applicant: Ticona LLC
    Inventors: Sherri M. Nelson, David W. Eastep, Timothy L. Tibor, Timothy A. Regan, Michael L. Wesley
  • Publication number: 20140034350
    Abstract: An umbilical (600) for the transfer of fluids and/or electric current/signals, particularly between the sea surface and equipment deployed on the sea bed (e.g., in deep waters), is provided. The umbilical contains a plurality of elongated umbilical elements (e.g., two or more), such as a channel element (603), fluid pipe (604), electric conductor/wire (606) (e.g., optic fiber cable), armoring wire, etc., enclosed within an outer sheath (e.g., plastic sheath). The umbilical also contains at least one reinforcing rod (607) formed from a plurality of unidirectionally aligned fiber rovings embedded within a thermoplastic polymer matrix.
    Type: Application
    Filed: April 11, 2012
    Publication date: February 6, 2014
    Applicant: Ticona LLC
    Inventors: Sherri M. Nelson, David W. Eastep, Timothy A. Regan, Michael L. Wesley