Patents by Inventor Michael Leabman

Michael Leabman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170187198
    Abstract: Embodiments disclosed herein may include a receiver configured to determine location data associated with one or more objects. The receiver transmits the location data associated with the one or more objects to a transmitter configured to transmit wireless power waves. The receiver then receives the wireless power waves transmitted by antennas of the transmitter having one or more characteristics where the one or more characteristics are defined based on the location data by a processor of the transmitter.
    Type: Application
    Filed: March 2, 2016
    Publication date: June 29, 2017
    Inventor: Michael A. LEABMAN
  • Publication number: 20170187223
    Abstract: Disclosed is a system including RF circuitry configured to generate an RF signal; a plurality of unit cells configured to receive the RF signal and to cause an RF energy signal having a center frequency to be present within the unit cells; and receiver circuitry configured to charge an electronic device in response to an antenna of the electronic device receiving the RF energy signal when the antenna is tuned to the center frequency and positioned in a near-field distance from one or more of the unit cells.
    Type: Application
    Filed: February 17, 2016
    Publication date: June 29, 2017
    Applicant: ENERGOUS CORPORATION
    Inventors: Alister HOSSEINI, Michael A. LEABMAN
  • Publication number: 20170187222
    Abstract: A wireless charging system comprises a first coaxial structure configured to have an RF signal present on a conductor; and a second coaxial structure configured to have an RF signal present, power being transferred from the first coaxial structure to the second coaxial structure when the first coaxial structure and the second coaxial structure are excited in proximity to each other.
    Type: Application
    Filed: February 17, 2016
    Publication date: June 29, 2017
    Inventors: Alister HOSSEINI, Michael A. LEABMAN
  • Publication number: 20170187225
    Abstract: Disclosed is a system including RF circuitry configured to generate an RF signal; a plurality of unit cells configured to receive the RF signal and to cause an RF energy signal having a center frequency to be present within the unit cells; and receiver circuitry configured to charge an electronic device in response to an antenna of the electronic device receiving the RF energy signal when the antenna is tuned to the center frequency and positioned in a near-field distance from one or more of the unit cells.
    Type: Application
    Filed: February 17, 2016
    Publication date: June 29, 2017
    Applicant: ENERGOUS CORPORATION
    Inventors: Alister HOSSEINI, Michael A. LEABMAN
  • Publication number: 20170187422
    Abstract: Near-field power transfer systems can include antenna elements that constructed or printed close to each other in a meandered arrangement, where neighboring antenna elements conduct currents that flow in opposite directions. This current flow entirely or almost entirely cancels out any far field RF radiation generated by the antennas or otherwise generated by the electromagnetic effects of the current flow. For a first current flowing in a first path, there may be a second current flowing in a second cancellation path, which cancels the far field radiation produced by the first current flowing in the first path. Therefore, there may be no radiation of power to the far field. Such cancellation, may not occur in a near-field active zone, where the transfer of power may occur between the transmitter and the receiver. A ground plane may block the leakage of power from the back of a transmitter and/or a receiver.
    Type: Application
    Filed: September 19, 2016
    Publication date: June 29, 2017
    Inventors: Alister HOSSEINI, Michael A. LEABMAN
  • Publication number: 20170187224
    Abstract: Disclosed is a system including RF circuitry configured to generate an RF signal; a plurality of unit cells configured to receive the RF signal and to cause an RF energy signal having a center frequency to be present within the unit cells; and receiver circuitry configured to charge an electronic device in response to an antenna of the electronic device receiving the RF energy signal when the antenna is tuned to the center frequency and positioned in a near-field distance from one or more of the unit cells.
    Type: Application
    Filed: February 17, 2016
    Publication date: June 29, 2017
    Applicant: ENERGOUS CORPORATION
    Inventors: Alister HOSSEINI, Michael A. LEABMAN
  • Publication number: 20170187227
    Abstract: Disclosed is a system including RF circuitry configured to generate an RF signal; a plurality of unit cells configured to receive the RF signal and to cause an RF energy signal having a center frequency to be present within the unit cells; and receiver circuitry configured to charge an electronic device in response to an antenna of the electronic device receiving the RF energy signal when the antenna is tuned to the center frequency and positioned in a near-field distance from one or more of the unit cells.
    Type: Application
    Filed: February 17, 2016
    Publication date: June 29, 2017
    Applicant: ENERGOUS CORPORATION
    Inventors: Alister HOSSEINI, Michael A. LEABMAN
  • Publication number: 20170187226
    Abstract: Disclosed is a system including RF circuitry configured to generate an RF signal; a plurality of unit cells configured to receive the RF signal and to cause an RF energy signal having a center frequency to be present within the unit cells; and receiver circuitry configured to charge an electronic device in response to an antenna of the electronic device receiving the RF energy signal when the antenna is tuned to the center frequency and positioned in a near-field distance from one or more of the unit cells.
    Type: Application
    Filed: February 17, 2016
    Publication date: June 29, 2017
    Applicant: ENERGOUS CORPORATION
    Inventors: Alister HOSSEINI, Michael A. LEABMAN
  • Publication number: 20170187228
    Abstract: Disclosed is a system including RF circuitry configured to generate an RF signal; a plurality of unit cells configured to receive the RF signal and to cause an RF energy signal having a center frequency to be present within the unit cells; and receiver circuitry configured to charge an electronic device in response to an antenna of the electronic device receiving the RF energy signal when the antenna is tuned to the center frequency and positioned in a near-field distance from one or more of the unit cells.
    Type: Application
    Filed: February 17, 2016
    Publication date: June 29, 2017
    Applicant: ENERGOUS CORPORATION
    Inventors: Alister HOSSEINI, Michael A. LEABMAN
  • Publication number: 20170187246
    Abstract: A wireless power transmission system includes a transmitter configured to transmit power waves including printed circuit boards where a printed circuit board and antenna boards, where each antenna board comprises one or more antenna elements, at least one antenna board resides on a printed circuit board, and the at least one antenna board is connected with a power feeding line. The transmitter further includes a heat sink attached to the at least one printed circuit board, wherein placement of the heat sink with respect to the at least one antenna board comprising the one or more antenna elements and shape of the heat sink is configured such that the heat sink operates as a reflector to direct wireless power waves transmitted from the at least one antenna board in a pre-determined direction.
    Type: Application
    Filed: March 3, 2016
    Publication date: June 29, 2017
    Inventor: Michael A. LEABMAN
  • Publication number: 20170187247
    Abstract: A wireless power transmission system includes a transmitter configured to transmit power waves including printed circuit boards where a printed circuit board and antenna boards, where each antenna board comprises one or more antenna elements, at least one antenna board resides on a printed circuit board, and the at least one antenna board is connected with a power feeding line. The transmitter further includes a heat sink attached to the at least one printed circuit board, wherein placement of the heat sink with respect to the at least one antenna board comprising the one or more antenna elements and shape of the heat sink is configured such that the heat sink operates as a reflector to direct wireless power waves transmitted from the at least one antenna board in a pre-determined direction.
    Type: Application
    Filed: March 3, 2016
    Publication date: June 29, 2017
    Inventor: Michael A. LEABMAN
  • Publication number: 20170187248
    Abstract: A wireless power transmission system includes a transmitter configured to transmit power waves including printed circuit boards where a printed circuit board and antenna boards, where each antenna board comprises one or more antenna elements, at least one antenna board resides on a printed circuit board, and the at least one antenna board is connected with a power feeding line. The transmitter further includes a heat sink attached to the at least one printed circuit board, wherein placement of the heat sink with respect to the at least one antenna board comprising the one or more antenna elements and shape of the heat sink is configured such that the heat sink operates as a reflector to direct wireless power waves transmitted from the at least one antenna board in a pre-determined direction.
    Type: Application
    Filed: March 3, 2016
    Publication date: June 29, 2017
    Inventor: Michael A. LEABMAN
  • Publication number: 20170179771
    Abstract: Wireless charging systems, and methods of use thereof, are disclosed herein. As an example, a method includes: receiving, at a computer system, information identifying a location of a receiver device that requires charging, the location is within a predetermined range of the computer system; transmitting a first set of sound waves, via one or more transducer elements of a first pocket-forming transmitter that is coupled with the computer system, that converge in 3-D space proximate to the predetermined location of the receiver device to form a pocket of energy; while transmitting the first set of sound waves: (i) receiving a second set of sound waves from a second pocket-forming transmitter, distinct from the first pocket-forming transmitter; and (ii) charging the computer system by converting energy from the second set of sound waves into usable power.
    Type: Application
    Filed: January 3, 2017
    Publication date: June 22, 2017
    Inventor: Michael A. Leabman
  • Publication number: 20170179763
    Abstract: The embodiments described herein include a transmitter that transmits a power transmission signal (e.g., radio frequency (RF) signal waves) to create a three-dimensional pocket of energy. At least one receiver can be connected to or integrated into electronic devices and receive power from the pocket of energy. The transmitter can locate the at least one receiver in a three-dimensional space using a communication medium (e.g., Bluetooth technology). The transmitter generates a waveform to create a pocket of energy around each of the at least one receiver. The transmitter uses an algorithm to direct, focus, and control the waveform in three dimensions. The receiver can convert the transmission signals (e.g., RF signals) into electricity for powering an electronic device. Accordingly, the embodiments for wireless power transmission can allow powering and charging a plurality of electrical devices without wires.
    Type: Application
    Filed: December 27, 2014
    Publication date: June 22, 2017
    Applicant: ENERGOUS CORPORATION
    Inventors: Michael A. LEABMAN, Gregory Scott BREWER
  • Publication number: 20170170665
    Abstract: The present disclosure describes a methodology for wireless power transmission based on pocket-forming. This methodology may include one transmitter and at least one or more receivers, being the transmitter the source of energy and the receiver the device that is desired to charge or power. The transmitter may identify and locate the device to which the receiver is connected and thereafter aim pockets of energy to the device in order to power it. Pockets of energy may be generated through constructive and destructive interferences, which may create null-spaces and spots of pockets of energy ranged into one or more radii from transmitter. Such feature may enable wireless power transmission through a selective range, which may limit operation area of electronic devices and/or may avoid formation of pockets of energy near and/or over certain areas, objects and people.
    Type: Application
    Filed: July 20, 2015
    Publication date: June 15, 2017
    Inventors: Michael A. Leabman, Gregory Scott Brewer
  • Publication number: 20170134686
    Abstract: An apparatus for transmitting wireless power is provided. The apparatus comprising a television system and a transmitter coupled to the television system. The transmitter is configured to emit a plurality of wireless power waves and define a pocket of energy thereby so that a receiver is able to interface with the pocket of energy and charge a device thereby, wherein the device is coupled to the receiver.
    Type: Application
    Filed: December 29, 2014
    Publication date: May 11, 2017
    Applicant: ENERGOUS CORPORATION
    Inventors: Michael A. LEABMAN, Gregory Scott BREWER
  • Publication number: 20170110887
    Abstract: Embodiments disclosed herein discloses a wireless charging system configured to generate and transmit power waves that, due to physical waveform characteristics converge at a predetermined location in a transmission field to generate a pocket of energy. Receivers associated with an electronic device being powered by the wireless charging system, may extract energy from these pocket of energy and then convert that energy into usable electric power for the electronic device associated with a receiver. The pocket of energy may manifest as a three-dimensional field (e.g., transmission field) where energy may be harvested by a receiver positioned within or nearby the pocket of energy. Video sensors capture actual video images of fields of view within the transmission field, and a processor identifies selected objects, selected events, and/or selected locations within the captured video images.
    Type: Application
    Filed: February 25, 2016
    Publication date: April 20, 2017
    Inventors: Douglas BELL, Michael A. LEABMAN
  • Publication number: 20170110888
    Abstract: Embodiments disclosed herein may generate and transmit power waves that, as result of their physical waveform characteristics (e.g., frequency, amplitude, phase, gain, direction), converge at a predetermined location in a transmission field to generate a pocket of energy. Receivers associated with an electronic device being powered by the wireless charging system, may extract energy from these pockets of energy and then convert that energy into usable electric power for the electronic device associated with a receiver. The pockets of energy may manifest as a three-dimensional field (e.g., transmission field) where energy may be harvested by a receiver positioned within or nearby the pocket of energy.
    Type: Application
    Filed: March 3, 2016
    Publication date: April 20, 2017
    Inventor: Michael A. LEABMAN
  • Patent number: D784964
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: April 25, 2017
    Assignee: ENERGOUS CORPORATION
    Inventor: Michael A. Leabman
  • Patent number: D786836
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: May 16, 2017
    Assignee: ENERGOUS CORPORATION
    Inventor: Michael A Leabman