Patents by Inventor Michael Lysaght

Michael Lysaght has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8629416
    Abstract: An improved method for substrate micromachining. Preferred embodiments of the present invention provide improved methods for the utilization of charged particle beam masking and laser ablation. A combination of the advantages of charged particle beam mask fabrication and ultra short pulse laser ablation are used to significantly reduce substrate processing time and improve lateral resolution and aspect ratio of features machined by laser ablation to preferably smaller than the diffraction limit of the machining laser.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: January 14, 2014
    Assignee: FEI Company
    Inventors: Marcus Straw, Milos Toth, Steven Randolph, Michael Lysaght, Mark Utlaut
  • Publication number: 20120200007
    Abstract: An improved method for substrate micromachining. Preferred embodiments of the present invention provide improved methods for the utilization of charged particle beam masking and laser ablation. A combination of the advantages of charged particle beam mask fabrication and ultra short pulse laser ablation are used to significantly reduce substrate processing time and improve lateral resolution and aspect ratio of features machined by laser ablation to preferably smaller than the diffraction limit of the machining laser.
    Type: Application
    Filed: April 18, 2012
    Publication date: August 9, 2012
    Applicant: FEI COMPANY
    Inventors: Marcus Straw, Milos Toth, Steven Randolph, Michael Lysaght, Mark Utlaut
  • Patent number: 8168961
    Abstract: An improved method for substrate micromachining. Preferred embodiments of the present invention provide improved methods for the utilization of charged particle beam masking and laser ablation. A combination of the advantages of charged particle beam mask fabrication and ultra short pulse laser ablation are used to significantly reduce substrate processing time and improve lateral resolution and aspect ratio of features machined by laser ablation to preferably smaller than the diffraction limit of the machining laser.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: May 1, 2012
    Assignee: FEI Company
    Inventors: Marcus Straw, Milos Toth, Steven Randolph, Michael Lysaght, Mark Utlaut
  • Publication number: 20100127190
    Abstract: An improved method for substrate micromachining. Preferred embodiments of the present invention provide improved methods for the utilization of charged particle beam masking and laser ablation. A combination of the advantages of charged particle beam mask fabrication and ultra short pulse laser ablation are used to significantly reduce substrate processing time and improve lateral resolution and aspect ratio of features machined by laser ablation to preferably smaller than the diffraction limit of the machining laser.
    Type: Application
    Filed: November 26, 2008
    Publication date: May 27, 2010
    Applicant: FEI COMPANY
    Inventors: MARCUS STRAW, Milos Toth, Steven Randolph, Michael Lysaght, Mark Utlaut
  • Publication number: 20070166285
    Abstract: The present invention generally relates to the treatment of uremic toxins in vivo using uremic toxin-treating enzymes, and/or cells capable of producing uremic toxin-treating enzymes or otherwise reacting with uremic toxins. Non-limiting examples of cases where the treatment of uremic toxins is desired include renal disease or dysfunction, gout, subjects receiving chemotherapy, or the like. In one aspect, the treatment includes an oral delivery composition able to reduce the blood concentration of one or more non-protein nitrogen compounds in vivo. The composition, in some cases, may comprise one, two, or more uremic toxin-treating enzymes, such as urease, uricase or creatininase. The oral delivery composition may be able to deliver the uremic toxin-treating enzymes, substantially undigested, to the intestines, where the enzymes can interact with uremic toxins transported to the intestines from the bloodstream.
    Type: Application
    Filed: March 6, 2007
    Publication date: July 19, 2007
    Applicant: Brown University
    Inventors: Jill O'Loughlin, Jan Bruder, Michael Lysaght
  • Publication number: 20050123529
    Abstract: The present invention generally relates to the treatment of uremic toxins in vivo using uremic toxin-treating enzymes, and/or cells capable of producing uremic toxin-treating enzymes or otherwise reacting with uremic toxins. Non-limiting examples of cases where the treatment of uremic toxins is desired include renal disease or dysfunction, gout, subjects receiving chemotherapy, or the like. In one aspect, the treatment includes an oral delivery composition able to reduce the blood concentration of one or more non-protein nitrogen compounds in vivo. The composition, in some cases, may comprise one, two, or more uremic toxin-treating enzymes, such as urease, uricase or creatininase. The oral delivery composition may be able to deliver the uremic toxin-treating enzymes, substantially undigested, to the intestines, where the enzymes can interact with uremic toxins transported to the intestines from the bloodstream.
    Type: Application
    Filed: December 9, 2003
    Publication date: June 9, 2005
    Applicant: Brown University
    Inventors: Jill O'Loughlin, Jan Bruder, Michael Lysaght
  • Patent number: 5837234
    Abstract: A bioartificial organ for implanting to provide a therapeutic effect is prepared containing a core of living cells encapsulated in a foam-like membrane having three regions: a dense, fine-pored, permselective inner region, a middle region that lacks macrovoids and a fine-pored outer region. The membrane has a molecular weight cutoff that permits passage to nutrients to the cells but not passage of the cells. Preferably, the membrane is made of polyether sulfone, pores range in size between 0.02 .mu.m and 2.0 .mu.m and have polyhedrally symmetric boundaries and are arranged asymmetrically from one surface to the other. The membrane has an asymmetry factor AF relative to the maximum pore diameter of 0.01 to 2.0 and a ratio of the maximum mean free path length to the diameter of the largest pore of greater than 3. The membrane can be hydrophobic or hydrophilic. The bioartificial organ is formed by coextrusion or by stepwise assembly by forming the cell core and then applying the membrane.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: November 17, 1998
    Assignee: CytoTherapeutics, Inc.
    Inventors: Frank T. Gentile, Shelley R. Winn, Michael Lysaght, Ulrich Baurmeister, Friedbert Wechs, Henning Rottger