Patents by Inventor Michael M Toribio

Michael M Toribio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9546959
    Abstract: A method and system that characterizes hydrogen sulfide in petroleum fluid employs a tool that includes a fluid analyzer for performing fluid analysis (including optical density (OD) for measuring carbon dioxide concentration) of a live oil sample, and a storage chamber for an analytical reagent fluidly coupled to a measurement chamber. An emulsion from fluid of the sample and the reagent is produced into the measurement chamber. The reagent changes color due to pH changes arising from chemical reactions between components of the sample and the reagent in the measurement chamber. The tool includes an optical sensor system that measures OD of a water phase of the emulsion at one or more determined wavelengths. The pH of the water phase is derived from such OD measurements. The pH of the water phase and the carbon dioxide concentration in the sample is used to calculate hydrogen sulfide concentration in the sample.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: January 17, 2017
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Kentaro Indo, Michael M. Toribio, Shu Pan
  • Patent number: 9074465
    Abstract: Methods and related systems are described for real-time wellsite production allocation analysis. Spectroscopic in-situ measurements are made in the vicinity of a wellsite of a produced fluid from one or more boreholes. The produced fluid includes in a co-mingled state, at least a first fluid component from a first production zone and a second fluid component from a second production zone. An allocation is estimated in real-time for at least the first fluid component in the produced fluid based at least in part on the spectroscopic in-situ measurements. The in-situ measurements can be several types, for example: (1) absorption of electromagnetic radiation having wavelengths in the range of ultraviolet, visible and/or infrared light, (2) X-ray fluorescence spectroscopy measurements, (3) electromagnetic scattering spectroscopic measurements such as Raman spectroscopy measurements, (4) NMR spectroscopy measurements, and (5) terahertz time-domain spectroscopy measurements.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: July 7, 2015
    Assignee: Schlumberger Technology Corporation
    Inventors: Patrice Abivin, Michael M Toribio, Kentaro Indo
  • Patent number: 8904859
    Abstract: A gas separation and detection tool for performing in situ analysis of borehole fluid is described. The tool comprises a sampling chamber for a downhole fluid. The sample chamber comprises a detector cell with an opening. The tool also comprises a gas separation module for taking a gas from the downhole fluid. The gas separation module comprises a membrane located in the opening, a support for holding the membrane, and a sealant applied between the housing and the membrane or support. Moreover, the tool comprises a gas detector for sensing the gas.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: December 9, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Jimmy Lawrence, Tim G. J. Jones, Kentaro Indo, Tsutomu Yamate, Noriyuki Matsumoto, Michael M. Toribio, Hidetoshi Yoshiuchi, Andrew Meredith, Nathan S. Lawrence, Li Jiang, Go Fujisawa, Oliver C. Mullins
  • Publication number: 20130071934
    Abstract: A method and system that characterizes hydrogen sulfide in petroleum fluid employs a tool that includes a fluid analyzer for performing fluid analysis (including optical density (OD) for measuring carbon dioxide concentration) of a live oil sample, and a storage chamber for an analytical reagent fluidly coupled to a measurement chamber. An emulsion from fluid of the sample and the reagent is produced into the measurement chamber. The reagent changes color due to pH changes arising from chemical reactions between components of the sample and the reagent in the measurement chamber. The tool includes an optical sensor system that measures OD of a water phase of the emulsion at one or more determined wavelengths. The pH of the water phase is derived from such OD measurements. The pH of the water phase and the carbon dioxide concentration in the sample is used to calculate hydrogen sulfide concentration in the sample.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 21, 2013
    Inventors: Kentaro Indo, Michael M. Toribio, Shu Pan
  • Publication number: 20120137764
    Abstract: A gas separation and detection tool for performing in situ analysis of borehole fluid is described. The tool comprises a sampling chamber for a downhole fluid. The sample chamber comprises a detector cell with an opening. The tool also comprises a gas separation module for taking a gas from the downhole fluid. The gas separation module comprises a membrane located in the opening, a support for holding the membrane, and a sealant applied between the housing and the membrane or support. Moreover, the tool comprises a gas detector for sensing the gas.
    Type: Application
    Filed: January 19, 2012
    Publication date: June 7, 2012
    Inventors: Jimmy Lawrence, Tim G. J. Jones, Kentaro Indo, Tsutomu Yamate, Noriyuki Matsumoto, Michael M. Toribio, Hidetoshi Yoshiuchi, Andrew Meredith, Nathan S. Lawrence, Li Jiang, Go Fujisawa, Oliver C. Mullins
  • Publication number: 20100307740
    Abstract: Methods and related systems are described for real-time wellsite production allocation analysis. Spectroscopic in-situ measurements are made in the vicinity of a wellsite of a produced fluid from one or more boreholes. The produced fluid includes in a co-mingled state, at least a first fluid component from a first production zone and a second fluid component from a second production zone. An allocation is estimated in real-time for at least the first fluid component in the produced fluid based at least in part on the spectroscopic in-situ measurements. The in-situ measurements can be several types, for example: (1) absorption of electromagnetic radiation having wavelengths in the range of ultraviolet, visible and/or infrared light, (2) X-ray fluorescence spectroscopy measurements, (3) electromagnetic scattering spectroscopic measurements such as Raman spectroscopy measurements, (4) NMR spectroscopy measurements, and (5) terahertz time-domain spectroscopy measurements.
    Type: Application
    Filed: December 18, 2009
    Publication date: December 9, 2010
    Applicant: Schlumberger Technology Corporation
    Inventors: Patrice Abivin, Michael M. Toribio, Kentaro Indo
  • Patent number: 7520160
    Abstract: An electrochemical sensor for measuring contents of a fluid or gas at high pressure and/or high temperature, for use, for example, in a wellbore for hydrocarbon applications, is provided. The sensor includes: a bulkhead-like electrode assembly including a cylindrical housing and a cylindrical electrode structure. The cylindrical electrode structure includes a cylindrical conductive pin extending from a high pressure region to a low pressure region and an electrode connected to one end of the pin at the high pressure region and having an electrode surface for exposure to a flow path of the fluid or gas in the high pressure region. At least a part of the surface of the pin is protected from direct contact with the fluid or the gas by an insulating coating impermeable to the fluid or gas. The pin may include an alternating pattern of protruding and receded portions.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: April 21, 2009
    Assignee: Schlumberger Technology Corporation
    Inventors: Michael M Toribio, Akira Kamiya, Stephane Vannuffelen, Noriyuki Matsumoto, Jimmy Lawrence
  • Publication number: 20090090176
    Abstract: An electrochemical sensor for measuring contents of a fluid or gas at high pressure and/or high temperature, for use, for example, in a wellbore for hydrocarbon applications, is provided. The sensor includes: a bulkhead-like electrode assembly including a cylindrical housing and a cylindrical electrode structure. The cylindrical electrode structure includes a cylindrical conductive pin extending from a high pressure region to a low pressure region and an electrode connected to one end of the pin at the high pressure region and having an electrode surface for exposure to a flow path of the fluid or gas in the high pressure region. At least a part of the surface of the pin is protected from direct contact with the fluid or the gas by an insulating coating impermeable to the fluid or gas. The pin may include an alternating pattern of protruding and receded portions.
    Type: Application
    Filed: October 4, 2007
    Publication date: April 9, 2009
    Applicant: Schlumberger Technology Corporation
    Inventors: MICHAEL M. TORIBIO, AKIRA KAMIYA, STEPHANE VANNUFFELEN, NORIYUKI MATSUMOTO, JIMMY LAWRENCE