Patents by Inventor Michael MacDougal

Michael MacDougal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11676976
    Abstract: A PIN photodetector includes an n-type semiconductor layer, an n-type semiconductor cap layer, a first plurality of p-type regions located within the n-type semiconductor cap layer and separated from one another by a distance d1, and an absorber layer located between the n-type semiconductor layer and the n-type semiconductor cap layer including the first plurality of p-type regions. The plurality of p-type regions are electrically connected to one another to provide an electrical response to light incident to the PIN photodetector.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: June 13, 2023
    Assignee: Attollo Engineering, LLC
    Inventors: Jonathan Geske, Andrew Hood, Michael MacDougal
  • Patent number: 11495562
    Abstract: A hybridized image sensor includes a first die and a second die. The first die includes a first surface, a first plurality of conductive bumps fabricated on the first surface, and a first alignment feature fabricated on the first surface. The second die includes a second surface, a second plurality of conductive bumps fabricated on the second surface, and second alignment features fabricated on the second surface, wherein the first alignment features interact with the second alignment features to align the first plurality of conductive bumps with the second plurality of conductive bumps.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: November 8, 2022
    Assignee: Attollo Engineering, LLC
    Inventors: Michael MacDougal, Andrew Hood
  • Publication number: 20210202420
    Abstract: A hybridized image sensor includes a first die and a second die. The first die includes a first surface, a first plurality of conductive bumps fabricated on the first surface, and a first alignment feature fabricated on the first surface. The second die includes a second surface, a second plurality of conductive bumps fabricated on the second surface, and second alignment features fabricated on the second surface, wherein the first alignment features interact with the second alignment features to align the first plurality of conductive bumps with the second plurality of conductive bumps.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 1, 2021
    Inventors: Michael MacDougal, Andrew Hood
  • Publication number: 20210082973
    Abstract: A PIN photodetector includes an n-type semiconductor layer, an n-type semiconductor cap layer, a first plurality of p-type regions located within the n-type semiconductor cap layer and separated from one another by a distance d1, and an absorber layer located between the n-type semiconductor layer and the n-type semiconductor cap layer including the first plurality of p-type regions. The plurality of p-type regions are electrically connected to one another to provide an electrical response to light incident to the PIN photodetector.
    Type: Application
    Filed: November 2, 2020
    Publication date: March 18, 2021
    Inventors: Jonathan Geske, Andrew Hood, Michael MacDougal
  • Patent number: 10854646
    Abstract: A PIN photodetector includes an n-type semiconductor layer, an n-type semiconductor cap layer, a first plurality of p-type regions located within the n-type semiconductor cap layer and separated from one another by a distance d1, and an absorber layer located between the n-type semiconductor layer and the n-type semiconductor cap layer including the first plurality of p-type regions. The plurality of p-type regions are electrically connected to one another to provide an electrical response to light incident to the PIN photodetector.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: December 1, 2020
    Assignee: ATTOLLO ENGINEERING, LLC
    Inventors: Jonathan Geske, Andrew Hood, Michael MacDougal
  • Publication number: 20200127023
    Abstract: A PIN photodetector includes an n-type semiconductor layer, an n-type semiconductor cap layer, a first plurality of p-type regions located within the n-type semiconductor cap layer and separated from one another by a distance d1, and an absorber layer located between the n-type semiconductor layer and the n-type semiconductor cap layer including the first plurality of p-type regions. The plurality of p-type regions are electrically connected to one another to provide an electrical response to light incident to the PIN photodetector.
    Type: Application
    Filed: October 19, 2018
    Publication date: April 23, 2020
    Inventors: Jonathan Geske, Andrew Hood, Michael MacDougal
  • Patent number: 8654811
    Abstract: Vertical Cavity Surface Emitting Laser (VCSEL) arrays with vias for electrical connection are disclosed. A Vertical Cavity Surface Emitting Laser (VCSEL) array in accordance with one or more embodiments of the present invention comprises a plurality of first mirrors, a plurality of second mirrors, a plurality of active regions, coupled between the plurality of first mirrors and the plurality of second mirrors, and a heatsink, thermally and mechanically coupled to the second mirror opposite the plurality of active regions, wherein an electrical path to at least one of the plurality of second mirrors is made through a via formed through a depth of the plurality of second mirrors, and a plurality of VCSELs in the VCSEL array are connected in series.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: February 18, 2014
    Assignee: Flir Systems, Inc.
    Inventors: Jonathan C. Geske, Chad Shin-deh Wang, Michael MacDougal
  • Patent number: 8581168
    Abstract: A single camera capable of capturing high speed laser return pulses for a target, as well as provide imaging information on the background of the target. This capability is enabled by having a read-out integrated circuit (ROIC) capable of extracting both types of information from a pixel of a focal plane array (FPA). Further, an ROIC topology that allows for the ability to distinguish between high frequency and low frequency signal paths, and provide supporting circuitry to process the two paths separately. One path may integrate the low frequency background scene to provide a high fidelity image of the scene. The second path may process high frequency noise and multiple laser pulse returns within a frame. These two paths may be combined to provide a background image with a superimposed laser return.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: November 12, 2013
    Assignee: Flir Systems, Inc.
    Inventors: Lloyd F. Linder, Daniel Renner, Michael MacDougal, Jonathan Geske, R. Jacob Baker
  • Patent number: 8324659
    Abstract: Embodiments of detectors made using lattice matched photoabsorbing layers are disclosed. A photodiode apparatus in accordance with one or more embodiments of the present invention comprises an indium phosphide substrate, and a photoabsorbing region comprising at least an indium gallium arsenide antimonide nitride (InGaAsSbN) layer, wherein the InGaAsSbN layer has a thickness of at least 100 nanometers and is nominally lattice-matched to the indium phosphide substrate.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: December 4, 2012
    Assignee: Aerius Photonics LLC
    Inventors: Michael MacDougal, Jonathan Geske, John E. Bowers
  • Publication number: 20120248288
    Abstract: Embodiments of the invention describe solutions directed towards having a single camera capable of capturing high speed laser return pulses for a target, as well as provide imaging information on the background of the target. This capability is enabled by having a read-out integrated circuit (ROIC) capable of extracting both types of information from a pixel of a focal plane array (FPA). Embodiments of the invention describe an ROIC topology that allows for the ability to distinguish between high frequency and low frequency signal paths, and provide supporting circuitry to process the two paths separately. One path may integrate the low frequency background scene to provide a high fidelity image of the scene. The second path may process high frequency noise and multiple laser pulse returns within a frame. These two paths may be combined to provide a background image with a superimposed laser return.
    Type: Application
    Filed: March 29, 2011
    Publication date: October 4, 2012
    Inventors: Lloyd F. Linder, Daniel Renner, Michael MacDougal, Jonathan Geske, R. Jacob Baker
  • Publication number: 20120051384
    Abstract: Vertical Cavity Surface Emitting Laser (VCSEL) arrays with vias for electrical connection are disclosed. A Vertical Cavity Surface Emitting Laser (VCSEL) array in accordance with one or more embodiments of the present invention comprises a plurality of first mirrors, a plurality of second mirrors, a plurality of active regions, coupled between the plurality of first mirrors and the plurality of second mirrors, and a heatsink, thermally and mechanically coupled to the second mirror opposite the plurality of active regions, wherein an electrical path to at least one of the plurality of second mirrors is made through a via formed through a depth of the plurality of second mirrors, and a plurality of VCSELs in the VCSEL array are connected in series.
    Type: Application
    Filed: August 25, 2010
    Publication date: March 1, 2012
    Applicant: AERIUS PHOTONICS, LLC
    Inventors: Jonathan C. Geske, Chad Shin-deh Wang, Michael MacDougal
  • Publication number: 20110169048
    Abstract: Embodiments of detectors made using lattice matched photoabsorbing layers are disclosed. A photodiode apparatus in accordance with one or more embodiments of the present invention comprises an indium phosphide substrate, and a photoabsorbing region comprising at least an indium gallium arsenide antimonide nitride (InGaAsSbN) layer, wherein the InGaAsSbN layer has a thickness of at least 100 nanometers and is nominally lattice-matched to the indium phosphide substrate.
    Type: Application
    Filed: March 24, 2011
    Publication date: July 14, 2011
    Applicant: AERIUS PHOTONICS LLC
    Inventors: Michael MacDougal, Jonathan Geske, John E. Bowers
  • Patent number: 7915639
    Abstract: Embodiments of detectors made using lattice matched photoabsorbing layers are disclosed. A photodiode apparatus in accordance with one or more embodiments of the present invention comprises an indium phosphide substrate, and a photoabsorbing region comprising at least an indium gallium arsenide antimonide nitride (InGaAsSbN) layer, wherein the InGaAsSbN layer has a thickness of at least 100 nanometers and is nominally lattice-matched to the indium phosphide substrate.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: March 29, 2011
    Assignee: Aerius Photonics LLC
    Inventors: Michael MacDougal, Jonathan Geske, John E. Bowers
  • Publication number: 20100096665
    Abstract: Embodiments of detectors made using lattice matched photoabsorbing layers are disclosed. A photodiode apparatus in accordance with one or more embodiments of the present invention comprises an indium phosphide substrate, and a photoabsorbing region comprising at least an indium gallium arsenide antimonide nitride (InGaAsSbN) layer, wherein the InGaAsSbN layer has a thickness of at least 100 nanometers and is nominally lattice-matched to the indium phosphide substrate.
    Type: Application
    Filed: October 20, 2008
    Publication date: April 22, 2010
    Applicant: AERIUS PHOTONICS LLC
    Inventors: Michael MacDougal, Jonathan Geske, John E. Bowers