Patents by Inventor Michael Meister

Michael Meister has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240158284
    Abstract: A glass pane, especially to a glass pane obtained by singularization from a preferably floated glass strip formed by hot forming, is provided. The glass pane is a borosilicate glass with a top side, a bottom side, and a thickness the top and bottom surfaces of at least 1.75 mm and at most 7 mm. The glass pane has a magnitude of the sum total of refractions from the top side and the bottom side within a square area Mb of 500 mm by 500 mm for light incident perpendicularly on the glass pane for a 99.9% quantile of 0 mdpt to less than 1.7 mdpt in at least one direction parallel to the surface of the glass pane.
    Type: Application
    Filed: October 5, 2023
    Publication date: May 16, 2024
    Applicant: SCHOTT Technical Glass Solutions GmbH
    Inventors: Juliane Brandt-Slowik, Thomas Schmiady, Stefan Eberl, Andreas Sprenger, Armin Vogl, Michael Meister, Tommy Schröder, Michael Reinl
  • Patent number: 11890844
    Abstract: A thin glass substrate, as well as a method and an apparatus are provided. The glass substrate has a glass having first and second main surfaces and elongated elevations on one of the main surfaces. The elevations rise in a normal direction, have a longitudinal extent that is greater than two times a transverse extent, and have a height, on average, that is less than 100 nm, and with a transverse extent of the elevation smaller than 40 mm. The method includes melting a glass, hot forming the glass, and adjusting a viscosity of the glass so that for the viscosity ?1 for a first stretch over a first distance of up to 1.5 m downstream of a flow rate control component and y1 indicating a second distance to a location immediately downstream the flow rate control component the equation lg ?1(y1)/dPa·s=(lg ?01/dPa·s+a1(y1)) applies.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: February 6, 2024
    Assignee: SCHOTT AG
    Inventors: Armin Vogl, Thomas Schmiady, Thilo Zachau, Jochen Alkemper, Michael Meister, Christian Kunert, Lutz Klippe, Rüdiger Dietrich
  • Patent number: 11745459
    Abstract: Thin glass substrates are provided. Also provided are methods and apparatuses for the production thereof and provides a thin glass substrate of improved optical quality. The method includes, after the melting and before a hot forming process, adjusting the viscosity of the glass that is to be formed or has at least partially been formed is in a defined manner for the thin glass substrate to be obtained. The apparatus includes a device for melting, a device for hot forming, and also a device for defined adjustment of the viscosity of the glass to be formed into a thin glass substrate, and the device for defined adjustment of the viscosity of the glass to be formed into a thin glass substrate is arranged upstream of the device for hot forming.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: September 5, 2023
    Assignee: SCHOTT AG
    Inventors: Armin Vogl, Thomas Schmiady, Thilo Zachau, Michael Meister, Jochen Alkemper, Christian Kunert, Lutz Klippe, Rüdiger Dietrich
  • Publication number: 20230191741
    Abstract: A thin glass substrate, as well as a method and an apparatus are provided. The glass substrate has a glass having first and second main surfaces and elongated elevations on one of the main surfaces. The elevations rise in a normal direction, have a longitudinal extent that is greater than two times a transverse extent, and have a height, on average, that is less than 100 nm, and with a transverse extent of the elevation smaller than 40 mm. The method includes melting a glass, hot forming the glass, and adjusting a viscosity of the glass so that for the viscosity ?1 for a first stretch over a first distance of up to 1.5 m downstream of a flow rate control component and y1 indicating a second distance to a location immediately downstream the flow rate control component the equation lg ?1(y1)/dPa·s=(lg ?01/dPa·s+a1(y1)) applies.
    Type: Application
    Filed: February 21, 2023
    Publication date: June 22, 2023
    Applicant: SCHOTT AG
    Inventors: Armin VOGL, Thomas SCHMIADY, Thilo ZACHAU, Jochen ALKEMPER, Michael MEISTER, Christian KUNERT, Lutz KLIPPE, Rüdiger DIETRICH
  • Publication number: 20220204382
    Abstract: The present disclosure relates to a thin glass for an optical component that includes a first side with a first surface and a second side opposite the first side with a second surface. The thin glass has a three-dimensional shape with at least one target curvature and a thickness of less than 700 ?m. On at least one first measurement area of 3×3 mm2 of the first surface, all surface structure components in a wavelength range of 0.1 mm to 1 mm have an arithmetical mean height Sa of below 30 nm, below 20 nm, below 10 nm, or below 8 nm. On the first measurement area, all surface structure components in a wavelength range from 0.1 mm to 1 mm can have an arithmetical mean height Sa of between 1 nm and 30 nm, between 3 nm and 20 nm, or between 6 nm and 10 nm. The values for the arithmetical mean height refer to a measurement by means of white light interferometry, with a bandpass filtering of 0.1 mm to 1 mm, i.e. with a bandpass filtering for viewing surface structure components in wavelength ranges from 0.
    Type: Application
    Filed: March 18, 2022
    Publication date: June 30, 2022
    Applicant: SCHOTT AG
    Inventors: Michael Meister, Katharina Alt, Volker Seibert, Ulrich Lange, Stephan Corvers
  • Publication number: 20200238664
    Abstract: Thin glass substrates are provided. Also provided are methods and apparatuses for the production thereof and provides a thin glass substrate of improved optical quality. The method includes, after the melting and before a hot forming process, adjusting the viscosity of the glass that is to be formed or has at least partially been formed is in a defined manner for the thin glass substrate to be obtained. The apparatus includes a device for melting, a device for hot forming, and also a device for defined adjustment of the viscosity of the glass to be formed into a thin glass substrate, and the device for defined adjustment of the viscosity of the glass to be formed into a thin glass substrate is arranged upstream of the device for hot forming.
    Type: Application
    Filed: April 17, 2020
    Publication date: July 30, 2020
    Applicant: SCHOTT AG
    Inventors: Armin VOGL, Thomas SCHMIADY, Thilo ZACHAU, Michael MEISTER, Jochen ALKEMPER, Christian KUNERT, Lutz KLIPPE, Rüdiger DIETRICH
  • Patent number: 10644417
    Abstract: A coaxial cable connector for attachment to an end of a coaxial cable is disclosed. The coaxial cable connector includes a rotatable body segment having a body wall with an outer surface and an inner surface defining a width of the body wall. The body wall has a radial dimension which varies along a perimeter of the rotatable body segment. The inner surface defines a longitudinal opening extending between a forward end of the rotatable body segment and a rearward end of the rotatable body segment. A post positions proximal the forward end of the rotatable body segment. The post has a first end and a second end with a bore extending therebetween. The post is rotationally stationary with respect to the rotatable body segment. A coupling member positions proximal to the first end of the post. The rotatable body segment is rotated to close the coaxial cable connector.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: May 5, 2020
    Assignee: Corning Optical Communications RF LLC
    Inventors: Anders Balcer, Michael Ole Matzen, Michael Meister, Thomas Dewey Miller, Jens Petersen, Nikolaj Slobodziuk
  • Patent number: 10450971
    Abstract: A method and a device for controlling a combustion of an internal combustion engine are provided, including an arrangement, which generates a signal for the intensity of the combustion in a combustion chamber of the internal combustion engine from a sensor signal of the internal combustion engine. The intensity is compared to a reference level, which was formed from intensities of preceding combustions in the combustion chamber by moving average calculation. An irregular combustion is detected if the intensity exceeds the reference level in a predetermined manner, and then at least one operating parameter of the internal combustion engine is shifted in the direction of an avoidance of the irregular combustion. Following an irregular combustion, the averaging for forming the reference level is accelerated for a specified duration.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: October 22, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Matthias Biehl, Carsten Kluth, Jasmin Dieringer, Michael Meister
  • Publication number: 20190308900
    Abstract: A thin glass substrate, as well as a method and an apparatus are provided. The glass substrate has a glass having first and second main surfaces and elongated elevations on one of the main surfaces. The elevations rise in a normal direction, have a longitudinal extent that is greater than two times a transverse extent, and have a height, on average, that is less than 100 nm, and with a transverse extent of the elevation smaller than 40 mm. The method includes melting a glass, hot forming the glass, and adjusting a viscosity of the glass so that for the viscosity ?1 for a first stretch over a first distance of up to 1.5 m downstream of a flow rate control component and y1 indicating a second distance to a location immediately downstream the flow rate control component the equation lg ?1(y1)/dPa·s=(lg ?01/dPa·s+a1(y1)) applies.
    Type: Application
    Filed: June 24, 2019
    Publication date: October 10, 2019
    Applicant: SCHOTT AG
    Inventors: Armin VOGL, Thomas SCHMIADY, Thilo ZACHAU, Jochen ALKEMPER, Michael MEISTER, Christian KUNERT, Lutz KLIPPE, Rüdiger DIETRICH
  • Patent number: 10387832
    Abstract: Systems and methods of managing operational system components. Maintenance schedules for each of a number of systems are maintained. A worn component scheduled to be replaced in an initial system is identified. An identified component that is scheduled to be removed from another systems and that is able to replace the worn component is identified. Based on the maintenance schedules associated with the systems, the identified component is able to be refurbished after its scheduled removal from the selected remote system in time to be used as a replacement for worn component when it is scheduled to be removed from the initial system. An indication associated with the identified component is stored that indicates that the identified component is scheduled to be: removed from the other system; refurbished; and installed into the initial system at the time of the scheduled removal of the worn component.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: August 20, 2019
    Assignee: Florida Power & Light Company
    Inventors: Amir Liberman, Gina Guarino, Matthew Brazauskas, Michael Meister, Paul Czerniak
  • Patent number: 10374368
    Abstract: A coaxial cable connector for attachment to an end of a coaxial cable is disclosed. The coaxial cable connector has a body having a forward end and a rearward end. An internal surface extends between the forward end and the rearward end defining a longitudinal opening and with a cable receiving area proximal the rearward end and a jacket stop proximal the forward end. A post is positioned in the body proximal the forward end and has a first end and a second end with a bore extending therebetween. An insulator is movably disposed in the bore of the post and has a through-passage and a movement limiter. A gripping member is disposed within the longitudinal opening of the body proximal the rearward end and provides a gripping action as the gripping member axially moves toward the forward end of the body.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: August 6, 2019
    Assignee: Corning Optical Communications RF LLC
    Inventors: Michael Ole Matzen, Michael Meister, Thomas Dewey Miller, Jens Petersen
  • Patent number: 10367312
    Abstract: A coaxial cable connector for attachment to an end of a coaxial cable is disclosed. The coaxial cable connector has a body having a forward end and a rearward end. An internal surface extends between the forward end and the rearward end defining a longitudinal opening and with a cable receiving area proximal the rearward end and a jacket stop proximal the forward end. A post is positioned in the body proximal the forward end and has a first end and a second end with a bore extending therebetween. An insulator is movably disposed in the bore of the post and has a through-passage, and a movement limiter. A gripping member is disposed within the longitudinal opening of the body proximal the rearward end and provides a gripping action as the gripping member axially moves toward the forward end of the body.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: July 30, 2019
    Assignee: Corning Optical Communications RF LLC
    Inventors: Michael Ole Matzen, Michael Meister, Thomas Dewey Miller, Jens Petersen
  • Patent number: 10218132
    Abstract: A post-less, self-gripping coaxial cable connector for tool-less attachment to an end of a coaxial cable is disclosed. The coaxial cable connector has a body having a forward end and a rearward end and a longitudinal opening. A retainer positioned in the body has a forward section, a rearward section, and a bore. A ring is movably disposed in the retainer. A gripping member having at least one spring finger is friction fit to the body and is radially inwardly biased in a predisposed orientation. The ring has a pusher feature configured to axially move the ring upon force being applied to the pusher feature by a coaxial cable received by the body causing the gripping member to engage the jacket of the coaxial cable when the coaxial cable is installed in the coaxial cable connector.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: February 26, 2019
    Assignee: Corning Optical Communications RF LLC
    Inventors: Anders Balcer, Michael Ole Matzen, Michael Meister, Thomas Dewey Miller, Jens Petersen, Nikolaj Slobodziuk
  • Patent number: 10211547
    Abstract: Connectors and methods for attaching connectors to one or more cables and/or conduits are disclosed. The disclosed connectors and methods may secure an outer surface of the cable (e.g., an outer jacket of a cable) or conduit.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: February 19, 2019
    Assignee: Corning Optical Communications RF LLC
    Inventors: Donald Andrew Burris, Jimmy Valentin Falster, Michael Ole Matzen, Michael Meister, Thomas Dewey Miller
  • Publication number: 20180309246
    Abstract: A coaxial cable connector for attachment to an end of a coaxial cable is disclosed. The coaxial cable connector has a body having a forward end and a rearward end. An internal surface extends between the forward end and the rearward end defining a longitudinal opening and with a cable receiving area proximal the rearward end and a jacket stop proximal the forward end. A post is positioned in the body proximal the forward end and has a first end and a second end with a bore extending therebetween. An insulator is movably disposed in the bore of the post and has a through-passage and a movement limiter. A gripping member is disposed within the longitudinal opening of the body proximal the rearward end and provides a gripping action as the gripping member axially moves toward the forward end of the body.
    Type: Application
    Filed: November 3, 2017
    Publication date: October 25, 2018
    Inventors: Michael Ole Matzen, Michael Meister, Thomas Dewey Miller, Jens Petersen
  • Publication number: 20180223749
    Abstract: A method and a device for controlling a combustion of an internal combustion engine are provided, including an arrangement, which generates a signal for the intensity of the combustion in a combustion chamber of the internal combustion engine from a sensor signal of the internal combustion engine. The intensity is compared to a reference level, which was formed from intensities of preceding combustions in the combustion chamber by moving average calculation. An irregular combustion is detected if the intensity exceeds the reference level in a predetermined manner, and then at least one operating parameter of the internal combustion engine is shifted in the direction of an avoidance of the irregular combustion. Following an irregular combustion, the averaging for forming the reference level is accelerated for a specified duration.
    Type: Application
    Filed: February 2, 2018
    Publication date: August 9, 2018
    Inventors: Matthias Biehl, Carsten Kluth, Jasmin Dieringer, Michael Meister
  • Publication number: 20180165641
    Abstract: Systems and methods of managing operational system components. Maintenance schedules for each of a number of systems are maintained. A worn component scheduled to be replaced in an initial system is identified. An identified component that is scheduled to be removed from another systems and that is able to replace the worn component is identified. Based on the maintenance schedules associated with the systems, the identified component is able to be refurbished after its scheduled removal from the selected remote system in time to be used as a replacement for worn component when it is scheduled to be removed from the initial system. An indication associated with the identified component is stored that indicates that the identified component is scheduled to be: removed from the other system; refurbished; and installed into the initial system at the time of the scheduled removal of the worn component.
    Type: Application
    Filed: December 13, 2016
    Publication date: June 14, 2018
    Inventors: Amir LIBERMAN, Gina GUARINO, Matthew BRAZAUSKAS, Michael MEISTER, Paul CZERNIAK
  • Publication number: 20180138603
    Abstract: A coaxial cable connector for attachment to an end of a coaxial cable is disclosed. The coaxial cable connector includes a rotatable body segment having a body wall with an outer surface and an inner surface defining a width of the body wall. The body wall has a radial dimension which varies along a perimeter of the rotatable body segment. The inner surface defines a longitudinal opening extending between a forward end of the rotatable body segment and a rearward end of the rotatable body segment. A post positions proximal the forward end of the rotatable body segment. The post has a first end and a second end with a bore extending therebetween. The post is rotationally stationary with respect to the rotatable body segment. A coupling member positions proximal to the first end of the post. The rotatable body segment is rotated to close the coaxial cable connector.
    Type: Application
    Filed: November 14, 2017
    Publication date: May 17, 2018
    Inventors: ANDERS BALCER, Michael Ole Matzen, Michael Meister, Thomas Dewey Miller, Jens Petersen, Nikolaj Slobodziuk
  • Publication number: 20180131139
    Abstract: A coaxial cable connector for attachment to an end of a coaxial cable is disclosed. The coaxial cable connector has a body having a forward end and a rearward end. An internal surface extends between the forward end and the rearward end defining a longitudinal opening and with a cable receiving area proximal the rearward end and a jacket stop proximal the forward end. A post is positioned in the body proximal the forward end and has a first end and a second end with a bore extending therebetween. An insulator is movably disposed in the bore of the post and has a through-passage, and a movement limiter. A gripping member is disposed within the longitudinal opening of the body proximal the rearward end and provides a gripping action as the gripping member axially moves toward the forward end of the body.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 10, 2018
    Inventors: Michael Ole Matzen, Michael Meister, Thomas Dewey Miller, Jens Petersen
  • Publication number: 20180131143
    Abstract: A post-less, self-gripping coaxial cable connector for tool-less attachment to an end of a coaxial cable is disclosed. The coaxial cable connector has a body having a forward end and a rearward end and a longitudinal opening. A retainer positioned in the body has a forward section, a rearward section, and a bore. A ring is movably disposed in the retainer. A gripping member having at least one spring finger is friction fit to the body and is radially inwardly biased in a predisposed orientation. The ring has a pusher feature configured to axially move the ring upon force being applied to the pusher feature by a coaxial cable received by the body causing the gripping member to engage the jacket of the coaxial cable when the coaxial cable is installed in the coaxial cable connector.
    Type: Application
    Filed: October 9, 2017
    Publication date: May 10, 2018
    Inventors: Anders Balcer, Michael Ole Matzen, Michael Meister, Thomas Dewey Miller, Jens Petersen, Nikolaj Slobodziuk