Patents by Inventor Michael MIROV

Michael MIROV has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10608401
    Abstract: A Kerr Mode Locked (“KLM”) laser is configured with a resonant cavity. The gain medium, selected from polycrystalline transition metal doped II-VI materials (“TM:II-VI), is cut at a normal angle of incidence and mounted in the resonant cavity so as to induce the KLM laser to emit a pulsed laser beam at a fundamental wavelength. The pulses of the emitted laser beam at the fundamental wavelength each vary within a 1.8-8 micron (“?m”) wavelength range, have a pulse duration equal to or longer than 30-35 femtosecond (“fs”) time range and an average output power within a mW to about 20 watts (“W”) power range. The disclosed resonant cavity is configured with a plurality of spaced apart reflectors, two of which flank and are spaced from the gain medium which is pumped to output a laser beam at a fundamental wavelength and its higher harmonic wavelengths. The gain medium is mounted on a translation mechanism operative to controllably displace the gain medium along a waist of the laser beam.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: March 31, 2020
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Sergey Vasilyev, Michael Mirov, Igor Moskalev
  • Patent number: 10483709
    Abstract: The present invention provides systems and methods for producing short laser pulses that are amplified and spectrally broadened in a bulk gain media. The bulk material, having laser gain and nonlinear properties, is concurrently exposed to an optical pump input and a seed input, the pump power being sufficient to amplify and spectrally broaden the seed pulse.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: November 19, 2019
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Igor Moskalev, Sergey Vasilyev, Michael Mirov, Valentin Gapontsev
  • Patent number: 10216063
    Abstract: Systems and methods for spectrally broadening seed pulses with a single pass laser amplifier are disclosed. A bulk TM:II-VI polycrystalline material with combined gain and nonlinear characteristic provides passive (cold) spectral broadening of high power seed pulses. Continuous pumping provides more significant spectral broadening. In particular, pulsed pumping of TM:II-VI polycrystalline material (e.g. Cr2+:ZnS, Cr2+:ZnSe, and Cr2+:CdSe) is shown to provide significant spectral broadening to the super continuum generation SCG level. Pulse picking, pump sources, master oscillators and various optical components are described.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: February 26, 2019
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Sergey Vasilyev, Igor Moskalev, Michael Mirov, Valentin Gapontsev
  • Publication number: 20180278006
    Abstract: The present invention provides systems and methods for producing short laser pulses that are amplified and spectrally broadened in a bulk gain media. The bulk material, having laser gain and nonlinear properties, is concurrently exposed to an optical pump input and a seed input, the pump power being sufficient to amplify and spectrally broaden the seed pulse.
    Type: Application
    Filed: September 22, 2016
    Publication date: September 27, 2018
    Inventors: Igor MOSKALEV, Sergey VASILYEV, Michael MIROV, Valentin GAPONTSEV
  • Publication number: 20180113372
    Abstract: Systems and methods for spectrally broadening seed pulses with a single pass laser amplifier are disclosed. A bulk TM:II-VI polycrystalline material with combined gain and nonlinear characteristic provides passive (cold) spectral broadening of high power seed pulses. Continuous pumping provides more significant spectral broadening. In particular, pulsed pumping of TM:II-VI polycrystalline material (e.g. Cr2+:ZnS, Cr2+:ZnSe, and Cr2+:CdSe) is shown to provide significant spectral broadening to the super continuum generation SCG level. Pulse picking, pump sources, master oscillators and various optical components are described.
    Type: Application
    Filed: September 30, 2016
    Publication date: April 26, 2018
    Inventors: Sergey VASILYEV, Igor MOSKALEV, Michael MIROV, Valentin GAPONTSEV
  • Publication number: 20170018903
    Abstract: A Kerr Mode Locked (“KLM”) laser is configured with a resonant cavity. The gain medium, selected from polycrystalline transition metal doped II-VI materials (“TM:II-VI), is cut at a normal angle of incidence and mounted in the resonant cavity so as to induce the KLM laser to emit a pulsed laser beam at a fundamental wavelength. The pulses of the emitted laser beam at the fundamental wavelength each vary within a 1.8-8 micron (“?m”) wavelength range, have a pulse duration equal to or longer than 30-35 femtosecond (“fs”) time range and an average output power within a mW to about 20 watts (“W”) power range. The disclosed resonant cavity is configured with a plurality of spaced apart reflectors, two of which flank and are spaced from the gain medium which is pumped to output a laser beam at a fundamental wavelength and its higher harmonic wavelengths. The gain medium is mounted on a translation mechanism operative to controllably displace the gain medium along a waist of the laser beam.
    Type: Application
    Filed: September 30, 2016
    Publication date: January 19, 2017
    Inventors: Sergey Vasilyev, Michael Mirov, Igor Moskalev
  • Publication number: 20160294149
    Abstract: A short-pulse mode-locked laser is configured with at least two reflective elements defining a resonant cavity therebetween, a laser gain element (“GE”) placed inside the resonant cavity at normal incidence and selected from transition metal doped II-VI materials; and an optical pump emitting pulsed output to synchronously or quasi-synchronously pump the GE at a pulse repetition rate frequency fpump, the pump being configured so that the fpump substantially matches an inversed round trip time in the resonant cavity flaser:fpump?flaser=c/2L, where c is the speed of light, L is the length of the resonant cavity. The synchronous or quasi-synchronous pumping triggers and sustains a short-pulse emission of the laser with picosecond or femtosecond pulse durations.
    Type: Application
    Filed: March 30, 2016
    Publication date: October 6, 2016
    Inventors: Sergey VASILYEV, Michael MIROV, Valentin GAPONTSEV