Patents by Inventor Michael P. Bakas

Michael P. Bakas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10364191
    Abstract: A method of forming silicon carbide by spark plasma sintering comprises loading a powder comprising silicon carbide into a die and exposing the powder to a pulsed current to heat the powder at a rate of between about 50° C./min and about 200° C./min to a peak temperature while applying a pressure to the powder. The powder is exposed to the peak temperature for between about 30 seconds and about 5 minutes to form a sintered silicon carbide material and the sintered silicon carbide material is cooled. Related structures and methods are disclosed.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: July 30, 2019
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Henry S. Chu, Robert C. O'Brien, Steven K. Cook, Michael P. Bakas
  • Publication number: 20190062221
    Abstract: A method of forming silicon carbide by spark plasma sintering comprises loading a powder comprising silicon carbide into a die and exposing the powder to a pulsed current to heat the powder at a rate of between about 50° C./min and about 200° C./min to a peak temperature while applying a pressure to the powder. The powder is exposed to the peak temperature for between about 30 seconds and about 5 minutes to form a sintered silicon carbide material and the sintered silicon carbide material is cooled. Related structures and methods are disclosed.
    Type: Application
    Filed: October 30, 2018
    Publication date: February 28, 2019
    Inventors: Henry S. Chu, Robert C. O'Brien, Steven K. Cook, Michael P. Bakas
  • Patent number: 10207956
    Abstract: A method of forming silicon carbide by spark plasma sintering comprises loading a powder comprising silicon carbide into a die and exposing the powder to a pulsed current to heat the powder at a rate of between about 50° C./min and about 200° C./min to a peak temperature while applying a pressure to the powder. The powder is exposed to the peak temperature for between about 30 seconds and about 5 minutes to form a sintered silicon carbide material and the sintered silicon carbide material is cooled. Related structures and methods are disclosed.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: February 19, 2019
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Henry S Chu, Robert C O'Brien, Steven K Cook, Michael P Bakas
  • Publication number: 20170369381
    Abstract: A method of forming silicon carbide by spark plasma sintering comprises loading a powder comprising silicon carbide into a die and exposing the powder to a pulsed current to heat the powder at a rate of between about 50° C./min and about 200° C./min to a peak temperature while applying a pressure to the powder. The powder is exposed to the peak temperature for between about 30 seconds and about 5 minutes to form a sintered silicon carbide material and the sintered silicon carbide material is cooled. Related structures and methods are disclosed.
    Type: Application
    Filed: June 28, 2016
    Publication date: December 28, 2017
    Inventors: HENRY S. CHU, ROBERT C. O'BRIEN, STEVEN K. COOK, MICHAEL P. BAKAS
  • Patent number: 8381632
    Abstract: The disclosure provides a shock absorbing layer comprised of one or more shock absorbing cells, where a shock absorbing cell is comprised of a cell interior volume containing a plurality of hydrogel particles and a free volume, and where the cell interior volume is surrounded by a containing layer. The containing layer has a permeability such that the hydrogel particles when swollen remain at least partially within the cell interior volume when subjected to a design shock pressure wave, allowing for force relaxation through hydrogel compression response. Additionally, the permeability allows for the flow of exuded free water, further dissipating wave energy. In an embodiment, a plurality of shock absorbing cells is combined with a penetration resistant material to mitigate the transmitted shock wave generated by an elastic precursor wave in the penetration resistant material.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: February 26, 2013
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: Henry S. Chu, Benjamin R. Langhorst, Michael P. Bakas, Gary L. Thinnes
  • Patent number: 7833922
    Abstract: Methods of forming aluminum oxynitride (AlON) materials include sintering green bodies comprising aluminum orthophosphate or another sacrificial material therein. Such green bodies may comprise aluminum, oxygen, and nitrogen in addition to the aluminum orthophosphate. For example, the green bodies may include a mixture of aluminum oxide, aluminum nitride, and aluminum orthophosphate or another sacrificial material. Additional methods of forming aluminum oxynitride (AlON) materials include sintering a green body including a sacrificial material therein, using the sacrificial material to form pores in the green body during sintering, and infiltrating the pores formed in the green body with a liquid infiltrant during sintering. Bodies are formed using such methods.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: November 16, 2010
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Michael P. Bakas, Thomas M. Lillo, Henry S. Chu
  • Publication number: 20100173768
    Abstract: Methods of forming aluminum oxynitride (AlON) materials include sintering green bodies comprising aluminum orthophosphate or another sacrificial material therein. Such green bodies may comprise aluminum, oxygen, and nitrogen in addition to the aluminum orthophosphate. For example, the green bodies may include a mixture of aluminum oxide, aluminum nitride, and aluminum orthophosphate or another sacrificial material. Additional methods of forming aluminum oxynitride (AlON) materials include sintering a green body including a sacrificial material therein, using the sacrificial material to form pores in the green body during sintering, and infiltrating the pores formed in the green body with a liquid infiltrant during sintering. Bodies are formed using such methods.
    Type: Application
    Filed: January 8, 2009
    Publication date: July 8, 2010
    Applicant: Battelle Energy Alliance, LLC
    Inventors: Michael P. Bakas, Thomas M. Lillo, Henry S. Chu