Patents by Inventor Michael P. Murphy

Michael P. Murphy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240065763
    Abstract: A system and method for preoperative surgical planning includes an electronic device with an interface for a user to input preoperative data, which may include an image (for example, a body part) and/or patient information (for example, medical information) and a server receiving and storing the preoperative data in a data storage. An application includes an implementation of an artificial intelligence model (for example, a neural network), which is executed using the preoperative data as input to generate a preoperative plan for a surgical procedure. The preoperative plan can include a list of medical instruments for use during the surgical procedure and/or a list of surgical steps to perform the surgical procedure Information about the surgical procedure (operative data) is captured during and/or after the surgical procedure. The operative data is stored in the data storage.
    Type: Application
    Filed: August 25, 2022
    Publication date: February 29, 2024
    Inventor: Michael P. Murphy
  • Publication number: 20230273109
    Abstract: Methods for determining a radius of gyration of a particle in solution using a light scattering detector are provided. The method may include passing the solution through a flowpath in a sample cell, determining respective angular normalization factors for first and second angles of the detector, obtaining a first scattering intensity of the particle in solution at the first angle, obtaining a second scattering intensity of the particle in solution at the second angle, obtaining a 10° scattering intensity of the particle in solution at an angle of about 10°, determining a first particle scattering factor, determining a second particle scattering factor, plotting an angular dissymmetry plot, fitting a line to the angular dissymmetry plot, determining a slope of the line at a selected location on the line, determining the radius of gyration of the particle in solution from the slope of the line, and outputting the radius of gyration.
    Type: Application
    Filed: May 1, 2023
    Publication date: August 31, 2023
    Inventors: Max HANEY, Michael P. MURPHY
  • Patent number: 11674880
    Abstract: Methods for determining a radius of gyration of a particle in solution using a light scattering detector are provided. The method may include passing the solution through a flowpath in a sample cell, determining respective angular normalization factors for first and second angles of the detector, obtaining a first scattering intensity of the particle in solution at the first angle, obtaining a second scattering intensity of the particle in solution at the second angle, obtaining a 10° scattering intensity of the particle in solution at an angle of about 10°, determining a first particle scattering factor, determining a second particle scattering factor, plotting an angular dissymmetry plot, fitting a line to the angular dissymmetry plot, determining a slope of the line at a selected location on the line, determining the radius of gyration of the particle in solution from the slope of the line, and outputting the radius of gyration.
    Type: Grant
    Filed: September 9, 2021
    Date of Patent: June 13, 2023
    Assignee: M & J Scientific, LLC
    Inventors: Max Haney, Michael P. Murphy
  • Publication number: 20220112152
    Abstract: Novel salicylamine derivatives are targeted directly to the mitochondria to increase effectiveness and lower required dosages in the treatment of conditions caused by inflammation or oxidative stress.
    Type: Application
    Filed: January 27, 2020
    Publication date: April 14, 2022
    Inventors: Kevin Moore, Michael P. Murphy, Naji Abumrad, John Fuller, Jr.
  • Publication number: 20220107270
    Abstract: Sample cells, light scattering detectors utilizing the sample cells, and methods for using the same are provided. The sample cell may include a body defining a flowpath extending axially therethrough. The flowpath may include a cylindrical inner section interposed between a first outer section and a second outer section. The first outer section may be frustoconical. A first end portion of the first outer section may be in direct fluid communication with the inner section and may have a cross-sectional area relatively smaller than a cross-sectional area at a second end portion thereof. The body may further define an inlet in direct fluid communication with the inner section. The inlet may be configured to direct a sample to the inner section of the flowpath.
    Type: Application
    Filed: December 15, 2021
    Publication date: April 7, 2022
    Inventors: Max HANEY, Michael P. MURPHY
  • Patent number: 11226287
    Abstract: Sample cells, light scattering detectors utilizing the sample cells, and methods for using the same are provided. The sample cell may include a body defining a flowpath extending axially therethrough. The flowpath may include a cylindrical inner section interposed between a first outer section and a second outer section. The first outer section may be frustoconical. A first end portion of the first outer section may be in direct fluid communication with the inner section and may have a cross-sectional area relatively smaller than a cross-sectional area at a second end portion thereof. The body may further define an inlet in direct fluid communication with the inner section. The inlet may be configured to direct a sample to the inner section of the flowpath.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: January 18, 2022
    Assignee: M & J Scientific, LLC
    Inventors: Max Haney, Michael P. Murphy
  • Publication number: 20210404941
    Abstract: Methods for determining a radius of gyration of a particle in solution using a light scattering detector are provided. The method may include passing the solution through a flowpath in a sample cell, determining respective angular normalization factors for first and second angles of the detector, obtaining a first scattering intensity of the particle in solution at the first angle, obtaining a second scattering intensity of the particle in solution at the second angle, obtaining a 10° scattering intensity of the particle in solution at an angle of about 10°, determining a first particle scattering factor, determining a second particle scattering factor, plotting an angular dissymmetry plot, fitting a line to the angular dissymmetry plot, determining a slope of the line at a selected location on the line, determining the radius of gyration of the particle in solution from the slope of the line, and outputting the radius of gyration.
    Type: Application
    Filed: September 9, 2021
    Publication date: December 30, 2021
    Inventors: Max HANEY, Michael P. MURPHY
  • Patent number: 11150175
    Abstract: Methods for determining a radius of gyration of a particle in solution using a light scattering detector are provided. The method may include passing the solution through a flowpath in a sample cell, determining respective angular normalization factors for first and second angles of the detector, obtaining a first scattering intensity of the particle in solution at the first angle, obtaining a second scattering intensity of the particle in solution at the second angle, obtaining a 10° scattering intensity of the particle in solution at an angle of about 10°, determining a first particle scattering factor, determining a second particle scattering factor, plotting an angular dissymmetry plot, fitting a line to the angular dissymmetry plot, determining a slope of the line at a selected location on the line, determining the radius of gyration of the particle in solution from the slope of the line, and outputting the radius of gyration.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: October 19, 2021
    Assignee: M & J Scientific, LLC
    Inventors: Max Haney, Michael P. Murphy
  • Publication number: 20210223172
    Abstract: Sample cells, light scattering detectors utilizing the sample cells, and methods for using the same are provided. The sample cell may include a body defining a flowpath extending axially therethrough. The flowpath may include a cylindrical inner section interposed between a first outer section and a second outer section. The first outer section may be frustoconical. A first end portion of the first outer section may be in direct fluid communication with the inner section and may have a cross-sectional area relatively smaller than a cross-sectional area at a second end portion thereof. The body may further define an inlet in direct fluid communication with the inner section. The inlet may be configured to direct a sample to the inner section of the flowpath.
    Type: Application
    Filed: January 2, 2019
    Publication date: July 22, 2021
    Inventors: Max HANEY, Michael P. MURPHY
  • Publication number: 20210223160
    Abstract: Methods for determining a radius of gyration of a particle in solution using a light scattering detector are provided. The method may include passing the solution through a flowpath in a sample cell, determining respective angular normalization factors for first and second angles of the detector, obtaining a first scattering intensity of the particle in solution at the first angle, obtaining a second scattering intensity of the particle in solution at the second angle, obtaining a 10° scattering intensity of the particle in solution at an angle of about 10°, determining a first particle scattering factor, determining a second particle scattering factor, plotting an angular dissymmetry plot, fitting a line to the angular dissymmetry plot, determining a slope of the line at a selected location on the line, determining the radius of gyration of the particle in solution from the slope of the line, and outputting the radius of gyration.
    Type: Application
    Filed: January 2, 2019
    Publication date: July 22, 2021
    Inventors: Max HANEY, Michael P. MURPHY
  • Patent number: 10551291
    Abstract: Viscometers and Viscometry methods are disclosed. In one general aspect a capillary bridge viscometer comprises an input port an output port a first capillary tubing arm in a first hydraulic path between the input port and a first differential detection point, a second capillary tubing arm in a second hydraulic path between the first differential detection point and the output port, a third capillary tubing arm in a third hydraulic path between the input port and a second differential detection point, a fourth capillary tubing arm in a fourth hydraulic path between the second differential detection point and the output port, an adjustable mechanical flow restrictor in one of the first, second, third, and fourth hydraulic paths, wherein the adjustable mechanical flow restrictor is operative to mechanically adjust a resistance to flow of a fluid while the fluid flows through the adjustable mechanical flow restrictor.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: February 4, 2020
    Assignee: Malvern Panalytical Inc.
    Inventors: Michael P. Murphy, Mark Nicholls
  • Publication number: 20180106710
    Abstract: Viscometers and Viscometry methods are disclosed. In one general aspect a capillary bridge viscometer comprises an input port an output port a first capillary tubing arm in a first hydraulic path between the input port and a first differential detection point, a second capillary tubing arm in a second hydraulic path between the first differential detection point and the output port, a third capillary tubing arm in a third hydraulic path between the input port and a second differential detection point, a fourth capillary tubing arm in a fourth hydraulic path between the second differential detection point and the output port, an adjustable mechanical flow restrictor in one of the first, second, third, and fourth hydraulic paths, wherein the adjustable mechanical flow restrictor is operative to mechanically adjust a resistance to flow of a fluid while the fluid flows through the adjustable mechanical flow restrictor.
    Type: Application
    Filed: September 11, 2017
    Publication date: April 19, 2018
    Inventors: Michael P. Murphy, Mark Nicholls
  • Patent number: 9759644
    Abstract: A capillary bridge viscometer, comprises an input port (flow in) an output port (flow out) a first capillary tubing arm (R1) in a first hydraulic path between the input port and a first differential detection point (DP+), a second capillary tubing arm (R3) in a second hydraulic path between the first differential detection point (DP+) and the output port (flow out), a third capillary tubing arm (R2) in a third hydraulic path between the input port (flow in) and a second differential detection point (DP?), a fourth capillary tubing arm (R4) in a fourth hydraulic path between the second differential detection point (DP?) and the output port (flow out), an adjustable mechanical flow restrictor (20) in one of the first, second, third, and fourth hydraulic paths, wherein the adjustable mechanical flow restrictor (20) is operative to mechanically adjust a resistance to flow of a fluid while the fluid flows through the adjustable mechanical flow restrictor.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: September 12, 2017
    Assignee: Malvern Instruments Incorporated
    Inventors: Mark Nicholls, Michael P. Murphy
  • Publication number: 20170167634
    Abstract: An ER fluid valve includes a housing and a plurality of parallel flow passages through the housing each defined by spaced electrodes at least one of which is controllable independently of other flow passages electrodes. A controller is configured to selectively establish electrical fields for all of the independently controllable electrodes to close all of the flow passages to ER fluid flowing through the housing. By removing the fields from all of the independently controllable electrodes, all the flow passages are open to the ER fluid flowing through the housing. By establishing fields for select independently controllable electrodes to close their associated flow passages and by leaving other flow passages open, restricted flow of the ER fluid through the housing is accomplished to vary the flow rate through the housing.
    Type: Application
    Filed: February 28, 2017
    Publication date: June 15, 2017
    Inventors: Michael P. Murphy, Robert Playter
  • Patent number: 9612183
    Abstract: A capillary bridge viscometer (120), comprises at least two at least generally balanced bridge arm conduits (R1, R2) a bulkhead supporting structure (122,134) supporting removable connection portions for each of a plurality of the arms in a bridge configuration, a bridge supporting structure (124,136) supporting the bridge arm conduits (R1,R2) and supporting two further removable connection portions (132) for each of the bridge arm conduits, wherein each of the further removable connection portions (132) supported by the bridge supporting structure are positioned to mate with a corresponding one of the removable connection portions (130) supported by the bulkhead supporting structure concurrently to hydraulically connect the bridge arm conduits in the bridge configuration; and a balance detector having hydraulic connections for connection between first and second differential detection points in the bridge when the removable connection portions on the bridge are mated to corresponding ones of the removable co
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: April 4, 2017
    Assignee: Malvern Instruments Incorporated
    Inventors: Paul G. Clarke, Michael P. Murphy
  • Publication number: 20160245413
    Abstract: An ER fluid valve includes a housing and a plurality of parallel flow passages through the housing each defined by spaced electrodes at least one of which is controllable independently of other flow passages electrodes. A controller is configured to selectively establish electrical fields for all of the independently controllable electrodes to close all of the flow passages to ER fluid flowing through the housing. By removing the fields from all of the independently controllable electrodes, all the flow passages are open to the ER fluid flowing through the housing. By establishing fields for select independently controllable electrodes to close their associated flow passages and by leaving other flow passages open, restricted flow of the ER fluid through the housing is accomplished to vary the flow rate through the housing.
    Type: Application
    Filed: February 10, 2015
    Publication date: August 25, 2016
    Inventors: Michael P. Murphy, Robert Playter
  • Patent number: 8973613
    Abstract: An ER fluid valve includes a housing and a plurality of parallel flow passages through the housing each defined by spaced electrodes at least one of which is controllable independently of other flow passages electrodes. A controller is configured to selectively establish electrical fields for all of the independently controllable electrodes to close all of the flow passages to ER fluid flowing through the housing. By removing the fields from all of the independently controllable electrodes, all the flow passages are open to the ER fluid flowing through the housing. By establishing fields for select independently controllable electrodes to close their associated flow passages and by leaving other flow passages open, restricted flow of the ER fluid through the housing is accomplished to vary the flow rate through the housing.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: March 10, 2015
    Assignee: Google Inc.
    Inventors: Michael P. Murphy, Robert Playter
  • Publication number: 20140144214
    Abstract: A capillary bridge viscometer, comprises an input port (flow in) an output port (flow out) a first capillary tubing arm (R1) in a first hydraulic path between the input port and a first differential detection point (DP+), a second capillary tubing arm (R3) in a second hydraulic path between the first differential detection point (DP+) and the output port (flow out), a third capillary tubing arm (R2) in a third hydraulic path between the input port (flow in) and a second differential detection point (DP?), a fourth capillary tubing arm (R4) in a fourth hydraulic path between the second differential detection point (DP?) and the output port (flow out), an adjustable mechanical flow restrictor (20) in one of the first, second, third, and fourth hydraulic paths, wherein the adjustable mechanical flow restrictor (20) is operative to mechanically adjust a resistance to flow of a fluid while the fluid flows through the adjustable mechanical flow restrictor.
    Type: Application
    Filed: September 23, 2011
    Publication date: May 29, 2014
    Inventors: Mark Nicholls, Michael P. Murphy
  • Patent number: 8667844
    Abstract: Presented is a system and method for testing the adhesion of coatings to substrates using an ultrasonic scalar. The system comprises a body, a flexible scalpel extending from said body, and a source of ultrasonic waves. The flexible scalpel applies pressure and ultrasonic waves to a coating that is removed when the adhesion of the coating to the substrate is substandard. The method comprises applying an flexible scalpel extending from an ultrasonic adhesion test device to a coating, applying ultrasonic waves through the flexible scalpel to the coating while moving across the coating, removing the coating if there is less than an acceptable adhesion of the coating to the substrate, and inspecting the coating to determine if coating was removed from the substrate.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: March 11, 2014
    Assignee: The Boeing Company
    Inventors: Christopher L. Broadbent, Michael P. Murphy, Randall Jahren
  • Publication number: 20140060162
    Abstract: A capillary bridge viscometer (120), comprises at least two at least generally balanced bridge arm conduits (R1, R2) a bulkhead supporting structure (122,134) supporting removable connection portions for each of a plurality of the arms in a bridge configuration, a bridge supporting structure (124,136) supporting the bridge arm conduits (R1,R2) and supporting two further removable connection portions (132) for each of the bridge arm conduits, wherein each of the further removable connection portions (132) supported by the bridge supporting structure are positioned to mate with a corresponding one of the removable connection portions (130) supported by the bulkhead supporting structure concurrently to hydraulically connect the bridge arm conduits in the bridge configuration; and a balance detector having hydraulic connections for connection between first and second differential detection points in the bridge when the removable connection portions on the bridge are mated to corresponding ones of the removable co
    Type: Application
    Filed: September 23, 2011
    Publication date: March 6, 2014
    Inventors: Paul G. Clarke, Michael P. Murphy