Patents by Inventor Michael P. Schwartz

Michael P. Schwartz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220033773
    Abstract: The present invention relates to methods for deriving human hematopoietic progenitors, primitive macrophages, and microglial cells from human pluripotent stem cells. In particular, provided herein are highly efficient and reproducible methods of obtaining human primitive macrophages and microglia from human pluripotent stem cells, where the primitive macrophages and microglia can be suitable for clinically relevant therapeutic applications.
    Type: Application
    Filed: August 18, 2021
    Publication date: February 3, 2022
    Inventors: James A. Thomson, Nicholas E. Propson, Michael P. Schwartz, Zhonggang Hou, Gene I. Uenishi, Igor I Slukvin, William L. Murphy, Jue Zhang
  • Publication number: 20220017873
    Abstract: The present invention relates to three-dimensional (3D) tissue constructs and methods of using such 3D tissue constructs to screen for neurotoxic agents. In particular, provided herein are methods of producing and using complex, highly uniform human tissue models comprising physiologically relevant human cells, where the tissue models have the degree of sample uniformity and reproducibility required for use in quantitative high-throughput screening applications.
    Type: Application
    Filed: July 12, 2021
    Publication date: January 20, 2022
    Inventors: James A. Thomson, William L. Murphy, Charles D. Page, Michael P. Schwartz, Zhonggang Hou
  • Patent number: 11124765
    Abstract: The present invention relates to methods for deriving human hematopoietic progenitors, primitive macrophages, and microglial cells from human pluripotent stem cells. In particular, provided herein are highly efficient and reproducible methods of obtaining human primitive macrophages and microglia from human pluripotent stem cells, where the primitive macrophages and microglia can be suitable for clinically relevant therapeutic applications.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: September 21, 2021
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: James A. Thomson, Nicholas E. Propson, Michael P. Schwartz, Zhonggang Hou, Gene I. Uenishi, Igor I. Slukvin, William L. Murphy, Jue Zhang
  • Patent number: 11060066
    Abstract: The present invention relates to three-dimensional (3D) tissue constructs and methods of using such 3D tissue constructs to screen for neurotoxic agents. In particular, provided herein are methods of producing and using complex, highly uniform human tissue models comprising physiologically relevant human cells, where the tissue models have the degree of sample uniformity and reproducibility required for use in quantitative high-throughput screening applications.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: July 13, 2021
    Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: James A. Thomson, William L. Murphy, Charles D. Page, Michael P. Schwartz, Zhonggang Hou
  • Publication number: 20190078054
    Abstract: The present invention relates to methods for deriving human hematopoietic progenitors, primitive macrophages, and microglial cells from human pluripotent stem cells. In particular, provided herein are highly efficient and reproducible methods of obtaining human primitive macrophages and microglia from human pluripotent stem cells, where the primitive macrophages and microglia can be suitable for clinically relevant therapeutic applications.
    Type: Application
    Filed: September 21, 2018
    Publication date: March 14, 2019
    Inventors: James A. Thomson, Nicholas E. Propson, Michael P. Schwartz, Zhonggang Hou, Gene I. Uenishi, Igor I. Slukvin, William L. Murphy, Jue Zhang
  • Patent number: 10195313
    Abstract: Patterned hydrogel arrays and methods of preparing patterned hydrogel arrays are disclosed. Advantageously, the methods used to prepare the patterned hydrogel arrays allow for controlling individual hydrogel spot conditions such as hydrogel spot modulus, hydrogel spot ligand identity and hydrogel spot ligand density, which allows for preparing a wide range of hydrogel spots in a single array format. Patterned hydrogel arrays can also be formed to include hydrogel-free pools surrounded by hydrogel. Additionally, the patterned hydrogel arrays of the present disclosure support the culture of a range of cell types. The patterned hydrogel arrays offer the ability to rapidly screen substrate components for influencing cell attachment, spreading, proliferation, migration, and differentiation.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: February 5, 2019
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: William L. Murphy, Ngoc Nhi Thi Le, Stefan Zorn, Michael P. Schwartz, Eric Huy Dang Nguyen
  • Patent number: 10081792
    Abstract: The present invention relates to methods for deriving human hematopoietic progenitors, primitive macrophages, and microglial cells from human pluripotent stem cells. In particular, provided herein are highly efficient and reproducible methods of obtaining human primitive macrophages and microglia from human pluripotent stem cells, where the primitive macrophages and microglia can be suitable for clinically relevant therapeutic applications.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: September 25, 2018
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: James A. Thomson, Nicholas E. Propson, Michael P. Schwartz, Zhonggang Hou, Gene I. Uenishi, Igor I. Slukvin, William L. Murphy, Jue Zhang
  • Patent number: 9688957
    Abstract: Hydrogel Compositions and methods of using hydrogel compositions are disclosed. Advantageously, the hydrogel compositions offer the ability to rapidly screen substrate components for influencing cell attachment, spreading, proliferation, migration, and differentiation. In particularly suitable embodiments, the hydrogel compositions of the present disclosure may be used to promote tubulogenesis of endothelial cells.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: June 27, 2017
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: William L. Murphy, Ngoc Nhi Le, Michael P. Schwartz, Eric Huy Dang Nguyen, Stefan Zorn, Hamisha Ardalani, Matthew Zanotelli, Matthew Brian Parlato, David Gregory Belair, William T. Daly
  • Publication number: 20160186137
    Abstract: The present invention relates to methods for deriving human hematopoietic progenitors, primitive macrophages, and microglial cells from human pluripotent stem cells. In particular, provided herein are highly efficient and reproducible methods of obtaining human primitive macrophages and microglia from human pluripotent stem cells, where the primitive macrophages and microglia can be suitable for clinically relevant therapeutic applications.
    Type: Application
    Filed: December 31, 2015
    Publication date: June 30, 2016
    Inventors: James A. Thomson, Nicholas E. Propson, Michael P. Schwartz, Zhonggang Hou, Gene I. Uenishi, Igor I. Slukvin, William L. Murphy, Jue Zhang
  • Publication number: 20160186146
    Abstract: The present invention relates to three-dimensional (3D) tissue constructs and methods of using such 3D tissue constructs to screen for neurotoxic agents. In particular, provided herein are methods of producing and using complex, highly uniform human tissue models comprising physiologically relevant human cells, where the tissue models have the degree of sample uniformity and reproducibility required for use in quantitative high-throughput screening applications.
    Type: Application
    Filed: December 31, 2015
    Publication date: June 30, 2016
    Inventors: James A. Thomson, William L. Murphy, Charles D. Page, Michael P. Schwartz, Zhonggang Hou
  • Publication number: 20150291929
    Abstract: Hydrogel Compositions and methods of using hydrogel compositions are disclosed. Advantageously, the hydrogel compositions offer the ability to rapidly screen substrate components for influencing cell attachment, spreading, proliferation, migration, and differentiation. In particularly suitable embodiments, the hydrogel compositions of the present disclosure may be used to promote tubulogenesis of endothelial cells.
    Type: Application
    Filed: April 10, 2015
    Publication date: October 15, 2015
    Inventors: William L. Murphy, Ngoc Nhi Le, Michael P. Schwartz, Eric Huy Dang Nguyen, Stefan Zorn, Hamisha Ardalani, Matthew Zanotelli, Matthew Brian Parlato, David Gregory Belair, William T. Daly
  • Publication number: 20150293073
    Abstract: Patterned hydrogel arrays and methods of preparing patterned hydrogel arrays are disclosed. Advantageously, the methods used to prepare the patterned hydrogel arrays allow for controlling individual hydrogel spot conditions such as hydrogel spot modulus, hydrogel spot ligand identity and hydrogel spot ligand density, which allows for preparing a wide range of hydrogel spots in a single array format. Patterned hydrogel arrays can also be formed to include hydrogel-free pools surrounded by hydrogel. Additionally, the patterned hydrogel arrays of the present disclosure support the culture of a range of cell types. The patterned hydrogel arrays offer the ability to rapidly screen substrate components for influencing cell attachment, spreading, proliferation, migration, and differentiation.
    Type: Application
    Filed: July 24, 2014
    Publication date: October 15, 2015
    Inventors: William L. Murphy, Ngoc Nhi Thi Le, Stefan Zorn, Michael P. Schwartz, Eric Huy Dang Nguyen
  • Patent number: 7903239
    Abstract: The invention includes sensors and sensing methods for determining cell morphology and/or chemical composition of an analyte. A porous substrate exhibiting a first optical signal is exposed to a target analyte and subsequently monitored for changes in the optical signal. More specifically, a photonic or porous substrate having a well-defined and highly tunable reflectivity or transmission spectrum, such as porous silicon (Si), porous alumina, porous Ge, porous GaAs, porous SiO2 and porous polymer, is used for example. A porous or photonic substrate is exposed to an analyte, such as a cell or other macromolecule, and changes in the scattered light are observed over time to determine cell morphology and/or chemical composition of the analyte using the substrate.
    Type: Grant
    Filed: October 19, 2005
    Date of Patent: March 8, 2011
    Assignee: The Regents of the University of California
    Inventors: Michael J. Sailor, Michael P. Schwartz, Sara Alvarez, Sangeeta Bhatia, Austin Derfus, Benjamin Migliori, Lin Chao, Yang Yang Li, Rebecca Campbell, Jason Dorvee, Ulla Camilla Rang
  • Publication number: 20080212068
    Abstract: The invention includes sensors and sensing methods for determining cell morphology and/or chemical composition of an analyte. A porous substrate exhibiting a first optical signal is exposed to a target analyte and subsequently monitored for changes in the optical signal. More specifically, a photonic or porous substrate having a well-defined and highly tunable reflectivity or transmission spectrum, such as porous silicon (Si), porous alumina, porous Ge, porous GaAs, porous SiO2 and porous polymer, is used for example. A porous or photonic substrate is exposed to an analyte, such as a cell or other macromolecule, and changes in the scattered light are observed over time to determine cell morphology and/or chemical composition of the analyte using the substrate.
    Type: Application
    Filed: October 19, 2005
    Publication date: September 4, 2008
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Michael J. Sailor, Michael P. Schwartz, Sara Alvarez, Sangeeta Bhatia, Austin Derfus, Benjamin Migliori, Lin Chao, Yang Yang Li, Rebecca Campbell, Jason Dorvee, Ulla Camilla Rang