Patents by Inventor Michael Prothmann

Michael Prothmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9422885
    Abstract: The present invention relates to a method for reducing the particle emissions of an internal combustion engine over its service life. The number of cylinders of the internal combustion engine in which post-injection is carried out is incrementally increased during the service life of the internal combustion engine. The increase in the number of cylinders receiving a post-injection may depend upon at least one parameter, which may be a running time, a distance performance, a particle concentration in exhaust gas, a load profile, or other parameter. The individual cylinders receiving post-injection may be changed to distribute wear.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: August 23, 2016
    Assignee: MTU Friedrichshafen GmbH
    Inventors: Michael Prothmann, Johannes Baldauf, Markus Fleckhammer
  • Publication number: 20150285180
    Abstract: The present invention relates to a method for reducing the particle emissions of an internal combustion engine over its service life. The number of cylinders of the internal combustion engine in which post-injection is carried out is incrementally increased during the service life of the internal combustion engine. The increase in the number of cylinders receiving a post-injection may depend upon at least one parameter, which may be a running time, a distance performance, a particle concentration in exhaust gas, a load profile, or other parameter. The individual cylinders receiving post-injection may be changed to distribute wear.
    Type: Application
    Filed: June 19, 2015
    Publication date: October 8, 2015
    Applicant: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Michael Prothmann, Johannes Baldauf, Markus Fleckhammer
  • Patent number: 9115623
    Abstract: In a method for controlling the NOx concentration in the exhaust gas of an internal combustion engine in which an NOx control deviation is calculated from an actual NOx value and a desired NOx value, a control value is calculated based on the NOx control deviation via an NOx controller and by means of the control value at least one condition of the cylinder inlet flow volume of the internal combustion engine is adjusted in that, additionally, an adaption injection begin is determined in dependence on the control value of the NOx controller, and the injection begin is changed by the adaption injection begin.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: August 25, 2015
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Michael Prothmann, Andreas Flohr, Joerg Remele, Martin Lehmann, Alexander Bernhard, Andreas Krammer
  • Patent number: 9051888
    Abstract: A method for automatically controlling a stationary gas engine, where an engine speed control deviation is computed from a set engine speed (nSL) and an actual engine speed (nIST), and a set torque is determined as a correcting variable from the speed control deviation by a speed controller, where a set volume flow is determined as a function of the set torque to establish a mixture throttle angle (DKW1, DKW2) and a gas throttle angle, and where the set volume flow is varied to adjust the gas throttle angle by a correction factor.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: June 9, 2015
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Peer Smuda, Michael Prothmann, Ludwig Klaser-Jenewein
  • Publication number: 20140083083
    Abstract: In a method for controlling the NOx concentration in the exhaust gas of an internal combustion engine in which an NOx control deviation is calculated from an actual NOx value and a desired NOx value, a control value is calculated based on the NOx control deviation via an NOx controller and by means of the control value at least one condition of the cylinder inlet flow volume of the internal combustion engine is adjusted in that, additionally, an adaption injection begin is determined in dependence on the control value of the NOx controller, and the injection begin is changed by the adaption injection begin.
    Type: Application
    Filed: October 8, 2013
    Publication date: March 27, 2014
    Applicant: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Michael Prothmann, Andreas Flohr, Joerg Remele, Martin Lehmann, Alexander Bernhard, Andreas Krammer
  • Patent number: 8140243
    Abstract: A method for controlling a V-type internal combustion engine with a separate common rail system on an A side and a separate common rail system on a B side of the internal combustion engine, in which a set injection quantity is computed at least as a function of an actual speed relative to a set speed. An injection time for controlling an A-side injector is computed by an injector map as a function of the set injection quantity and as a function of an A-side actual rail pressure. The injection time for controlling a B-side injector is computed by the same injector map as a function of the set injection quantity and as a function of a B-side actual rail pressure.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: March 20, 2012
    Assignee: MTU Friedrichshafen GmbH
    Inventors: Armin Doelker, Michael Prothmann
  • Patent number: 7856961
    Abstract: A method for automatically controlling the pressure of a common rail system on an A side and a common rail system on a B side of a V-type internal combustion engine, in which the rail pressure (pCR(A)) of the common rail system on the A side is automatically controlled by an A-side closed-loop pressure control system, and the rail pressure (pCR(B)) of the common rail system on the B side is automatically controlled by a B-side closed-loop pressure control system. The automatic control of each side is independent of the other. A common set rail pressure is set as a reference input for both closed-loop pressure control systems. A set injection quantity is computed by a speed controller as a function of an actual speed relative to a set speed, and a common disturbance variable is computed as a function of the set injection quantity. Both the correcting variable of the A-side pressure controller and the correcting variable of the B-side pressure controller are corrected by the common disturbance variable.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: December 28, 2010
    Assignee: MTU Friedrichshafen GmbH
    Inventors: Armin Doelker, Michael Prothmann
  • Publication number: 20100024773
    Abstract: A method for automatically controlling the pressure of a common rail system on an A side and a common rail system on a B side of a V-type internal combustion engine, in which the rail pressure (pCR(A)) of the common rail system on the A side is automatically controlled by an A-side closed-loop pressure control system, and the rail pressure (pCR(B)) of the common rail system on the B side is automatically controlled by a B-side closed-loop pressure control system. The automatic control of each side is independent of the other. A common set rail pressure is set as a reference input for both closed-loop pressure control systems. A set injection quantity is computed by a speed controller as a function of an actual speed relative to a set speed, and a common disturbance variable is computed as a function of the set injection quantity. Both the correcting variable of the A-side pressure controller and the correcting variable of the B-side pressure controller are corrected by the common disturbance variable.
    Type: Application
    Filed: August 4, 2009
    Publication date: February 4, 2010
    Applicant: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Armin DOELKER, Michael PROTHMANN
  • Publication number: 20100030450
    Abstract: A method for controlling a V-type internal combustion engine with a separate common rail system on an A side and a separate common rail system on a B side of the internal combustion engine, in which a set injection quantity is computed at least as a function of an actual speed relative to a set speed. An injection time for controlling an A-side injector is computed by an injector map as a function of the set injection quantity and as a function of an A-side actual rail pressure. The injection time for controlling a B-side injector is computed by the same injector map as a function of the set injection quantity and as a function of a B-side actual rail pressure.
    Type: Application
    Filed: August 4, 2009
    Publication date: February 4, 2010
    Applicant: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Armin DOELKER, Michael PROTHMANN
  • Publication number: 20090192698
    Abstract: A method for automatically controlling a stationary gas engine, where an engine speed control deviation is computed from a set engine speed (nSL) and an actual engine speed (nIST), and a set torque is determined as a correcting variable from the speed control deviation by a speed controller, where a set volume flow is determined as a function of the set torque to establish a mixture throttle angle (DKW1, DKW2) and a gas throttle angle, and where the set volume flow is varied to adjust the gas throttle angle by a correction factor.
    Type: Application
    Filed: January 30, 2009
    Publication date: July 30, 2009
    Applicant: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Peer SMUDA, Michael PROTHMANN, Ludwig KLASER-JENEWEIN