Patents by Inventor Michael Pushkarsky

Michael Pushkarsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110103411
    Abstract: Methods and apparatus for broad tuning of single wavelength quantum cascade lasers and the use of light output from such lasers for highly sensitive detection of trace gases such as nitrogen dioxide, acetylene, and vapors of explosives such as trinitrotoluene (TNT) and triacetone triperoxide (TATP) and TATP's precursors including acetone and hydrogen peroxide. These methods and apparatus are also suitable for high sensitivity, high selectivity detection of other chemical compounds including chemical warfare agents and toxic industrial chemicals. A quantum cascade laser (QCL) system that better achieves single mode, continuous, mode-hop free tuning for use in L-PAS (laser photoacoustic spectroscopy) by independently coordinating gain chip current, diffraction grating angle and external cavity length is described. An all mechanical method that achieves similar performance is also described. Additionally, methods for improving the sensor performance by critical selection of wavelengths are presented.
    Type: Application
    Filed: November 1, 2010
    Publication date: May 5, 2011
    Inventors: C. Kumar N. Patel, Ilya Dunayevskiy, Manu Prasanna, Rowel C. Go, Alexei Tsekoun, Michael Pushkarsky, Richard Maulini
  • Publication number: 20110080311
    Abstract: A laser source assembly (10) for providing an assembly output beam (12) includes a first MIR laser source (352A), a second MIR laser source (352B), and a beam combiner (241). The first MIR laser source (352A) emits a first MIR beam (356A) that is in the MIR range, and the second MIR laser source (352B) emits a second MIR beam (356B) that is in the MIR range. Further, the first MIR beam (356A) has a first linear polarization and the second MIR beam (356B) has a second linear polarization. The beam combiner (241) combines the first MIR beam (356A) and the second MIR beam (356B) to provide the assembly output beam (12). More specifically, the beam combiner (241) can include a combiner element that reflects light having the second linear polarization and that transmits light having the first linear polarization.
    Type: Application
    Filed: October 5, 2009
    Publication date: April 7, 2011
    Inventors: Michael Pushkarsky, Timothy Day, David F. Arnone, Thomas Edward Berg
  • Patent number: 7903704
    Abstract: Methods and apparatus for broad tuning of single wavelength quantum cascade lasers and the use of light output from such lasers for highly sensitive detection of trace gases such as nitrogen dioxide, acetylene, and vapors of explosives such as trinitrotoluene (TNT) and triacetone triperoxide (TATP) and TATP's precursors including acetone and hydrogen peroxide. These methods and apparatus are also suitable for high sensitivity, high selectivity detection of other chemical compounds including chemical warfare agents and toxic industrial chemicals. A quantum cascade laser (QCL) system that better achieves single mode, continuous, mode-hop free tuning for use in L-PAS (laser photoacoustic spectroscopy) by independently coordinating gain chip current, diffraction grating angle and external cavity length is described. An all mechanical method that achieves similar performance is also described. Additionally, methods for improving the sensor performance by critical selection of wavelengths are presented.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: March 8, 2011
    Assignee: Pranalytica, Inc.
    Inventors: C. Kumar N. Patel, Ilya Dunayevskiy, Manu Prasanna, Rowel C. Go, Alexei Tsekoun, Michael Pushkarsky, Richard Maulini
  • Publication number: 20100302796
    Abstract: An optical fiber switch (16) for alternatively directing an input beam (14) to a plurality of different locations (18A) (18B) (18C) (18D) includes an input fiber (30), a redirector (32), a redirector mover (382), a first output fiber (34), and a second output fiber (36). The input fiber (30) launches the input beam (14) along an input axis (30A). The redirector (32) is positioned in the path of the input beam (14). The redirector (32) redirects the input beam (14) so that a redirected beam (42) launches from the redirector (32) along a first redirected axis (360) that is spaced apart from the input axis (30A) when the redirector (32) is positioned at a first position (346), and launches from the redirector (32) along a second redirected axis (362) that is spaced apart from the input axis (30A) when the redirector (32) is positioned at a second position (348) that is different from the first position (346).
    Type: Application
    Filed: May 14, 2010
    Publication date: December 2, 2010
    Inventors: Michael Pushkarsky, Thomas Edward Berg
  • Patent number: 7733925
    Abstract: A laser source (10) for generating a continuously wavelength tunable light (12) includes a gain media (16), an optical output coupler (36F), a cavity collimator (38A), a diffraction grating (30), a grating beam (54), and a beam attacher (56). The diffraction grating (30) is spaced apart from the cavity collimator (38A) and the grating (30) cooperates with the optical output coupler (36F) to define an external cavity (32). The grating (30) includes a grating face surface (42A) that is in a grating plane (42B). The beam attacher (56) retains the grating beam (54) and allows the grating beam (54) and the grating (30) to effectively pivot about a pivot axis (33) that is located approximately at an intersection of a pivot plane (50) and the grating plane (42B).
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: June 8, 2010
    Assignee: Daylight Solutions, Inc.
    Inventors: Michael Pushkarsky, David F. Amone
  • Publication number: 20100111122
    Abstract: A laser source assembly (10) for providing an assembly output beam (12) includes a first MIR laser source (352A), a second MIR laser source (352B), and a beam combiner (244). The first MIR laser source (352A) emits a first MIR beam (356A) that is in the MIR range and the second MIR laser source (352B) emits a second MIR beam (356B) that is in the MIR range. Further, the beam combiner (244) spatially combines the first MIR beam (356A) and the second MIR beam (356B) to provide the assembly output beam (12). With this design, a plurality MIR laser sources (352A) (352B) can be packaged in a portable, common module, each of the MIR laser sources (352A) (352B) generates a narrow linewidth, accurately settable MIR beam (356A) (356B), and the MIR beams (356A) (356B) are combined to create a multiple watt assembly output beam (12) having the desired power. The beam combiner (244) can includes a combiner lens (364) and an output optical fiber (366).
    Type: Application
    Filed: April 21, 2009
    Publication date: May 6, 2010
    Applicant: Daylight Solutions, Inc.
    Inventors: Michael Pushkarsky, Timothy Day, David F. Arnone
  • Publication number: 20100002734
    Abstract: A laser source (10) for generating a continuously wavelength tunable light (12) includes a gain media (16), an optical output coupler (36F), a cavity collimator (38A), a diffraction grating (30), a grating beam (54), and a beam attacher (56). The gain media (16) generates the light (12), and the gain media (16) includes a first facet (36A) and a second facet (36B). The cavity collimator (38A) is spaced apart from the second facet (36B). The diffraction grating (30) is spaced apart from the cavity collimator (38A) and the grating (30) cooperates with the optical output coupler (36F) to define an external cavity (32). The grating (30) includes a grating face surface (42A) that is in a grating plane (42B). The gain media (16) has a media length (36I) and the cavity collimator (38A) has a collimator thickness (38D). The grating beam (54) retains the grating (30).
    Type: Application
    Filed: July 7, 2008
    Publication date: January 7, 2010
    Inventors: Michael Pushkarsky, David F. Amone
  • Publication number: 20080159341
    Abstract: Methods and apparatus for broad tuning of single wavelength quantum cascade lasers and the use of light output from such lasers for highly sensitive detection of trace gases such as nitrogen dioxide, acetylene, and vapors of explosives such as trinitrotoluene (TNT) and triacetone triperoxide (TATP) and TATP's precursors including acetone and hydrogen peroxide. These methods and apparatus are also suitable for high sensitivity, high selectivity detection of other chemical compounds including chemical warfare agents and toxic industrial chemicals. A quantum cascade laser (QCL) system that better achieves single mode, continuous, mode-hop free tuning for use in L-PAS (laser photoacoustic spectroscopy) by independently coordinating gain chip current, diffraction grating angle and external cavity length is described. An all mechanical method that achieves similar performance is also described. Additionally, methods for improving the sensor performance by critical selection of wavelengths are presented.
    Type: Application
    Filed: June 22, 2007
    Publication date: July 3, 2008
    Inventors: C. Kumar N. Patel, Ilya Dunayevskiy, Manu Prasanna, Rowel C. Go, Alexei Tsekoun, Michael Pushkarsky, Richard Maulini
  • Publication number: 20080084561
    Abstract: A method and apparatus architecture for detecting gases, particularly hazardous gases which should be detected in miniscule amounts. High sensitivity detection of chemical warfare agents (CWAs) is set forth with very low probability of false positives (PFP) by the use of an innovative laser-photoacoustic spectrometer (L-PAS). Detection of diisopropyl methylphosphonate (DIMP), a decomposition product of Sarin and a relatively harmless surrogate for the nerve gases, is made in the presence of other gases that are expected to be interferences in an urban setting. Detection sensitivity for DIMP in the presence of these interferences of better than 0.45 ppb, which satisfies current homeland and military security requirements is shown as well as the first analysis of optical techniques for the detection of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) in real world conditions.
    Type: Application
    Filed: November 21, 2007
    Publication date: April 10, 2008
    Inventors: C. Kumar Patel, Michael Pushkarsky, Michael Webber, Tyson MacDonald
  • Publication number: 20070229834
    Abstract: A method and apparatus architecture for detecting gases, particularly hazardous gases which should be detected in miniscule amounts. High sensitivity detection of chemical warfare agents (CWAs) is set forth with very low probability of false positives (PFP) by the use of an innovative laser-photoacoustic spectrometer (L-PAS). Detection of diisopropyl methylphosphonate (DIMP), a decomposition product of Sarin and a relatively harmless surrogate for the nerve gases, is made in the presence of other gases that are expected to be interferences in an urban setting. Detection sensitivity for DIMP in the presence of these interferences of better than 0.45 ppb, which satisfies current homeland and military security requirements is shown as well as the first analysis of optical techniques for the detection of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) in real world conditions.
    Type: Application
    Filed: October 21, 2005
    Publication date: October 4, 2007
    Inventors: C. Kumar Patel, Michael Pushkarsky, Michael Webber, Tyson MacDonald