Patents by Inventor Michael Q Le

Michael Q Le has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11894655
    Abstract: An H-bridge integrated laser driver optimizes power dissipation, impedance matching, low-swing and high-swing reliability for electro-absorption modulated laser (EML) and directly modulated laser diode (DML) applications. The laser driver includes a retimer for converting low-speed parallel data to a high-speed serial bit stream and to an inverted representation of the high-speed parallel bit stream, an M-bit PMOS DAC configured to receive a first buffered bit stream, an N-bit NMOS DAC configured to receive a second buffered bit stream substantially synchronized with the first buffered bit stream. A protective device is coupled between the M-bit DAC and the N-bit DAC.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: February 6, 2024
    Assignee: SITRUS TECHNOLOGY CORPORATION
    Inventors: Karim Vincent Abdelhalim, Michael Q. Le
  • Patent number: 11650618
    Abstract: A referenceless frequency acquisition scheme locks to an unknown data frequency by feedback of sampled data to a digitally controlled oscillator (DCO). A received data signal is converted to deserialized outputs, then by a phase detector to symbol streams of phase updates. Each symbol stream is converted to a lower rate sum, for which absolute values are computed and periodically summed. Absolute value sums are obtained for each frequency over a range of test frequencies to obtain totals, each corresponding to a different test frequency. A critical value is determined from among the totals. The DCO is set to the test frequency corresponding to the critical value as a coarse approximation for the unknown frequency.
    Type: Grant
    Filed: January 3, 2022
    Date of Patent: May 16, 2023
    Assignee: SITRUS TECHNOLOGY CORPORATION
    Inventors: Mrunmay Talegaonkar, Michael Q. Le
  • Patent number: 11569829
    Abstract: An ADC system dynamically adjusts threshold levels used to resolve PAM signal amplitudes into digital values. The ADC circuitry includes an analog front end to receive and condition the PAM signal, a low-resolution ADC to digitize the conditioned signal according to a first set of threshold values, and a high-resolution ADC to subsample the conditioned signal to generate subsampled signals. A microprocessor in communication with the low-resolution ADC and the high-resolution ADC derives a statistical value from the subsampled signals, determines an updated set of threshold values, and dynamically replaces the first set of threshold values for the low-resolution ADC with the updated set of threshold values.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: January 31, 2023
    Assignee: SITRUS TECHNOLOGY CORPORATION
    Inventors: Michael Q. Le, Mrunmay Talegaonkar
  • Patent number: 11528168
    Abstract: A method to implement hybrid signal processing includes steps for receiving an analog signal at a receiver frontend, sampling the received analog signal and storing the analog sampled signals using a plurality of sampling circuitries inside the receiver frontend. Then, processing the plurality of analog sampled signals using interleaved feed-forward equalizers (FFEs) to provide FFE interleaved sampled signal values corresponding to each of the sampling circuitries. Then, processing the analog sampled signals at an interleaved Decision Feedback Equalizer (DFE) to obtain DFE interleaved sampled signal values, summing each of the FFE interleaved sampled signal values with output from one of the DFE interleaved sampled signal values to provide equalizer output signal values, and digitizing the equalizer output signal values to provide digital data bits corresponding to each of the equalizer output signal values.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: December 13, 2022
    Assignee: SITRUS TECHNOLOGY CORPORATION
    Inventors: Michael Q. Le, Jorge Antonio Casanova
  • Publication number: 20220300029
    Abstract: A referenceless frequency acquisition scheme locks to an unknown data frequency by feedback of sampled data to a digitally controlled oscillator (DCO). A received data signal is converted to deserialized outputs, then by a phase detector to symbol streams of phase updates. Each symbol stream is converted to a lower rate sum, for which absolute values are computed and periodically summed. Absolute value sums are obtained for each frequency over a range of test frequencies to obtain totals, each corresponding to a different test frequency. A critical value is determined from among the totals. The DCO is set to the test frequency corresponding to the critical value as a coarse approximation for the unknown frequency.
    Type: Application
    Filed: January 3, 2022
    Publication date: September 22, 2022
    Inventors: Mrunmay TALEGAONKAR, Michael Q. LE
  • Patent number: 11216024
    Abstract: A referenceless frequency acquisition scheme locks to an unknown data frequency by feedback of sampled data to a digitally controlled oscillator (DCO). A received data signal is converted to deserialized outputs, then by a phase detector to symbol streams of phase updates. Each symbol stream is converted to a lower rate sum, for which absolute values are computed and periodically summed. Absolute value sums are obtained for each frequency over a range of test frequencies to obtain totals, each corresponding to a different test frequency. A critical value is determined from among the totals. The DCO is set to the test frequency corresponding to the critical value as a coarse approximation for the unknown frequency.
    Type: Grant
    Filed: March 20, 2021
    Date of Patent: January 4, 2022
    Assignee: SITRUS TECHNOLOGY CORPORATION
    Inventors: Mrunmay Talegaonkar, Michael Q. Le
  • Publication number: 20210376845
    Abstract: An ADC system dynamically adjusts threshold levels used to resolve PAM signal amplitudes into digital values. The ADC circuitry includes an analog front end to receive and condition the PAM signal, a low-resolution ADC to digitize the conditioned signal according to a first set of threshold values, and a high-resolution ADC to subsample the conditioned signal to generate subsampled signals. A microprocessor in communication with the low-resolution ADC and the high-resolution ADC derives a statistical value from the subsampled signals, determines an updated set of threshold values, and dynamically replaces the first set of threshold values for the low-resolution ADC with the updated set of threshold values.
    Type: Application
    Filed: August 4, 2021
    Publication date: December 2, 2021
    Inventors: Michael Q. LE, Mrunmay TALEGAONKAR
  • Patent number: 11095299
    Abstract: An ADC system dynamically adjusts threshold levels used to resolve PAM signal amplitudes into digital values. The ADC circuitry includes an analog front end to receive and condition the PAM signal, a low-resolution ADC to digitize the conditioned signal according to a first set of threshold values, and a high-resolution ADC to subsample the conditioned signal to generate subsampled signals. A microprocessor in communication with the low-resolution ADC and the high-resolution ADC derives a statistical value from the subsampled signals, determines an updated set of threshold values, and dynamically replaces the first set of threshold values for the low-resolution ADC with the updated set of threshold values.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: August 17, 2021
    Assignee: SITRUS TECHNOLOGY CORPORATION
    Inventors: Michael Q. Le, Mrunmay Talegaonkar
  • Patent number: 10951250
    Abstract: A DC-shifting predriver has an input port configured for coupling to a serial data stream, an inverting output amplifier having an feedback node and an output port configured for coupling to a transistor at the input to a high-speed DAC or TX driver, and a capacitor AC-coupled between the input port and the feedback node. A weak feedback inverter having structure similar to, but less drive strength than the inverting output amplifier is coupled between the output port and the feedback node to act as a positive feedback latch. The predriver provides a DC shift up to 3V with high reliability and minimal intersymbol interference for data rates from 10 GS/s to 28 GS/s or higher. The predriver may provide multiple input ports implemented as a predriver array in an M-bit system, and the output amplifier may consist of N stages.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: March 16, 2021
    Assignee: SITRUS TECHNOLOGY CORPORATION
    Inventors: Karim Vincent Abdelhalim, Michael Q. Le
  • Publication number: 20210036900
    Abstract: A method to implement hybrid signal processing includes steps for receiving an analog signal at a receiver frontend, sampling the received analog signal and storing the analog sampled signals using a plurality of sampling circuitries inside the receiver frontend. Then, processing the plurality of analog sampled signals using interleaved feed-forward equalizers (FFEs) to provide FFE interleaved sampled signal values corresponding to each of the sampling circuitries. Then, processing the analog sampled signals at an interleaved Decision Feedback Equalizer (DFE) to obtain DFE interleaved sampled signal values, summing each of the FFE interleaved sampled signal values with output from one of the DFE interleaved sampled signal values to provide equalizer output signal values, and digitizing the equalizer output signal values to provide digital data bits corresponding to each of the equalizer output signal values.
    Type: Application
    Filed: August 3, 2020
    Publication date: February 4, 2021
    Inventors: Michael Q. LE, Jorge Antonio Casanova
  • Publication number: 20210028597
    Abstract: An H-bridge integrated laser driver optimizes power dissipation, impedance matching, low-swing and high-swing reliability for electro-absorption modulated laser (EML) and directly modulated laser diode (DML) applications. The laser driver includes a retimer for converting low-speed parallel data to a high-speed serial bit stream and to an inverted representation of the high-speed parallel bit stream, an M-bit PMOS DAC configured to receive a first buffered bit stream, an N-bit NMOS DAC configured to receive a second buffered bit stream substantially synchronized with the first buffered bit stream. A protective device is coupled between the M-bit DAC and the N-bit DAC.
    Type: Application
    Filed: September 28, 2020
    Publication date: January 28, 2021
    Inventors: Karim Vincent ABDELHALIM, Michael Q. LE
  • Patent number: 10790636
    Abstract: An H-bridge integrated laser driver optimizes power dissipation, impedance matching, low-swing and high-swing reliability for electro-absorption modulated laser (EML) and directly modulated laser diode (DML) applications. The laser driver includes a retimer for converting low-speed parallel data to a high-speed serial bit stream and to an inverted representation of the high-speed parallel bit stream, an M-bit PMOS DAC configured to receive a first buffered bit stream, an N-bit NMOS DAC configured to receive a second buffered bit stream substantially synchronized with the first buffered bit stream. A protective device is coupled between the M-bit DAC and the N-bit DAC.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: September 29, 2020
    Assignee: SITRUS TECHNOLOGY CORPORATION
    Inventors: Karim Vincent Abdelhalim, Michael Q. Le
  • Patent number: 8443124
    Abstract: A physical layer device (PLD) includes a first serializer-deserializer (SERDES) device and a second SERDES device. Each SERDES device includes an analog portion with a serial port that is configured to communicate serial data with various network devices, and a digital portion that is configured to communicate parallel data with other various network devices. The PLD includes a first signal path that is configured to route serial data signals between the analog portions of the SERDES devices, bypassing the digital portions of the SERDES devices. Therefore, the SERDES devices can directly communicate serial data without performing parallel data conversion. A second signal path is configured to route recovered clock and data signals between the analog portions of the SERDES devices, but still bypassing the digital portions of the SERDES devices. The recovered clock and data signals are then regenerated before being transmitted over a network device.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: May 14, 2013
    Assignee: Broadcom Corporation
    Inventors: Kevin T. Chan, Michael Q. Le
  • Patent number: 8233578
    Abstract: A phase lock loop frequency synthesizer includes a phase rotator in the feedback path of the PLL. The PLL includes a phase detector, a low pass filter, a charge pump, a voltage controlled oscillator (“VCO”), and a feedback path connecting output of the VCO to the phase detector. The feedback path includes a phase rotator connected to the output of the VCO and to an input of a frequency divider. Coarse frequency control is implemented by adjusting the input reference frequency to the phase detector or by adjusting the divider ratio of the frequency divider. Fine frequency control is achieved by increasing or decreasing the rotation speed of the phase rotator. The phase rotator constantly rotates phase of the VCO output, thereby causing a frequency shift at the output of the phase rotator.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: July 31, 2012
    Assignee: Broadcom Corporation
    Inventors: Chun-Ying Chen, Michael Q. Le, Myles Wakayama
  • Patent number: 7848394
    Abstract: A first serial transceiver has a reference clock, a first transmitter, and a first receiver. The first receiver includes (i) a phase detector, and (ii) a phase rotator. The phase rotator is driven by the reference clock. A first multiplexer is coupled to the first receiver. The first multiplexer receives the phase detector output and a control signal. When the first serial transceiver is in a test configuration, the first multiplexer passes the control signal to the phase rotator, thereby varying the frequency of the phase rotator output. A second multiplexer is coupled to the first transmitter. The second multiplexer receives a reference clock signal and the phase rotator output. When the first serial transceiver is in a test configuration, the second multiplexer passes the phase rotator output to the first transmitter. The first transmitter thereby transmits a serial data stream that varies in frequency from said reference clock.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: December 7, 2010
    Assignee: Broadcom Corporation
    Inventors: Raymond L. Clancy, Michael Q. Le
  • Publication number: 20100177809
    Abstract: A physical layer device (PLD) includes a first serializer-deserializer (SERDES) device and a second SERDES device. Each SERDES device includes an analog portion with a serial port that is configured to communicate serial data with various network devices, and a digital portion that is configured to communicate parallel data with other various network devices. The PLD includes a first signal path that is configured to route serial data signals between the analog portions of the SERDES devices, bypassing the digital portions of the SERDES devices. Therefore, the SERDES devices can directly communicate serial data without performing parallel data conversion. A second signal path is configured to route recovered clock and data signals between the analog portions of the SERDES devices, but still bypassing the digital portions of the SERDES devices. The recovered clock and data signals are then regenerated before being transmitted over a network device.
    Type: Application
    Filed: March 19, 2010
    Publication date: July 15, 2010
    Applicant: Broadcom Corporation
    Inventors: Kevin T. Chan, Michael Q. Le
  • Patent number: 7706433
    Abstract: A physical layer device (PLD) includes a first serializer-deserializer (SERDES) device and a second SERDES device. Each SERDES device includes an analog portion with a serial port that is configured to communicate serial data with various network devices, and a digital portion that is configured to communicate parallel data with other various network devices. The PLD includes a first signal path that is configured to route serial data signals between the analog portions of the SERDES devices, bypassing the digital portions of the SERDES devices. Therefore, the SERDES devices can directly communicate serial data without performing parallel data conversion. A second signal path is configured to route recovered clock and data signals between the analog portions of the SERDES devices, but still bypassing the digital portions of the SERDES devices. The recovered clock and data signals are then regenerated before being transmitted over a network device.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: April 27, 2010
    Assignee: Broadcom Corporation
    Inventors: Kevin T. Chan, Michael Q. Le
  • Publication number: 20090296868
    Abstract: A system and method are used to allow for phase rotator control signals to be produced that rotate bits in the signals more than one step per clock cycle. This can be done through the following operation. First and second data signals that include a plurality of data bits are stored. Rotation of data bits in the first data signal and subsequently data bits in the second data signal is controlled based on a phase control signal during each clock cycle. The first and second controlled data signals are interleaved to form first and second interleaved data signals. One of the first and second interleaved data signals is selected based on a portion of the phase control signal during a second half of the clock cycle. Finally, the selected data signal is transmitted as the phase control signal.
    Type: Application
    Filed: August 5, 2009
    Publication date: December 3, 2009
    Applicant: BROADCOM CORPORATION
    Inventors: Hui PAN, Seong-Ho Lee, Michael Q. Le
  • Patent number: 7583772
    Abstract: A system and method are used to allow for phase rotator control signals to be produced that rotate bits in the signals more than one step per clock cycle. This can be done through the following operation. First and second data signals that include a plurality of data bits are stored. Rotation of data bits in the first data signal and subsequently data bits in the second data signal is controlled based on a phase control signal during each clock cycle. The first and second controlled data signals are interleaved to form first and second interleaved data signals. One of the first and second interleaved data signals is selected based on a portion of the phase control signal during a second half of the clock cycle. Finally, the selected data signal is transmitted as the phase control signal.
    Type: Grant
    Filed: October 3, 2005
    Date of Patent: September 1, 2009
    Assignee: Broadcom Corporation
    Inventors: Hui Pan, Seong-Ho Lee, Michael Q. Le
  • Publication number: 20090135890
    Abstract: A physical layer device (PLD) includes a first serializer-deserializer (SERDES) device and a second SERDES device. Each SERDES device includes an analog portion with a serial port that is configured to communicate serial data with various network devices, and a digital portion that is configured to communicate parallel data with other various network devices. The PLD includes a first signal path that is configured to route serial data signals between the analog portions of the SERDES devices, bypassing the digital portions of the SERDES devices. Therefore, the SERDES devices can directly communicate serial data without performing parallel data conversion. A second signal path is configured to route recovered clock and data signals between the analog portions of the SERDES devices, but still bypassing the digital portions of the SERDES devices. The recovered clock and data signals are then regenerated before being transmitted over a network device.
    Type: Application
    Filed: January 15, 2009
    Publication date: May 28, 2009
    Applicant: Broadcom Corporation
    Inventors: Kevin T. Chan, Michael Q. Le