Patents by Inventor Michael R. Cates

Michael R. Cates has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10743776
    Abstract: A system for measuring the blood loss comprises a measuring device that determines a hemoglobin concentration of fluid within a container utilizing a light source and a light detector. The container receives blood and other fluids from a patient during a medical procedure. Light from the light source is passed through the blood and other fluids in the container and is detected by the light detector. Based upon a magnitude of light detected, a hemoglobin concentration of the fluid in the container can be determined. A volume-measuring device determines the volume of blood and fluid in the container. Knowing the hemoglobin concentration and volume of fluid in the container, the volume of patient blood loss in the container can be determined. The blood loss measuring device in combination with infusion systems maintains a real-blood volume status so that proper infusion of blood, crystalloid and/or colloid solutions occurs.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: August 18, 2020
    Assignee: MAJELCO MEDICAL, INC.
    Inventors: Alfred Akerman, Stephen W. Allison, Matthew B. Scudiere, Michael R. Cates, David L. Beshears, Lara M. Brewer Cates, Adan James Akerman, Annette MacIntyre
  • Patent number: 10690684
    Abstract: A system for measuring the blood loss comprises a measuring device that determines the hemoglobin concentration of fluid within a container utilizing a light source and a light detector. The container receives blood and other fluids from a patient during a medical procedure. Light from the light source is passed through the blood and other fluids in the container and is detected by the light detector. Based upon a magnitude of light detected, the hemoglobin concentration of the fluid in the container can be determined. A volume-measuring device determines the volume of blood and fluid in the container. Knowing the hemoglobin concentration and volume of fluid in the container, the volume of patient blood loss in the container can be determined. The blood loss measuring device in combination with infusion systems maintains a real-blood volume status so that proper infusion of blood, crystalloid and/or colloid solutions occurs.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: June 23, 2020
    Assignees: Majelco Medical, Inc., University of Utah Research Foundation
    Inventors: Annette Macintyre, Lara Brewer Cates, Suzanne Wendelken, Quinn Tate, Soeren Hoehne, Alfred Akerman, Stephen W. Allison, Matthew B. Scudiere, Michael R. Cates, David L. Beshears, Adan James Akerman
  • Publication number: 20190261868
    Abstract: A system for measuring the blood loss comprises a measuring device that determines a hemoglobin concentration of fluid within a container utilizing a light source and a light detector, The container receives blood and other fluids from a patient during a medical procedure, Light from the light source is passed through the blood and other fluids in the container and is detected by the light detector. Based upon a magnitude of light detected, a hemoglobin concentration of the fluid in the container can be determined. A volume-measuring device determines the volume of blood and fluid in the container. Knowing the hemoglobin concentration and volume of fluid in the container, the volume of patient blood loss in the container can be determined. The blood loss measuring device in combination with infusion systems maintains a real-blood volume status so that proper infusion of blood, crystalloid and/or colloid solutions occurs.
    Type: Application
    Filed: May 13, 2019
    Publication date: August 29, 2019
    Inventors: Alfred Akerman, Stephen W. Allison, Matthew B. Scudiere, Michael R. Cates, David L. Beshears, Lara M. Brewer Cates, Adan James Akerman, Annette MacIntyre
  • Patent number: 10285596
    Abstract: A system for measuring the blood loss comprises a measuring device that determines a hemoglobin concentration of fluid within a container utilizing a light source and a light detector. The container receives blood and other fluids from a patient during a medical procedure. Light from the light source is passed through the blood and other fluids in the container and is detected by the light detector. Based upon a magnitude of light detected, a hemoglobin concentration of the fluid in the container can be determined. A volume-measuring device determines the volume of blood and fluid in the container. Knowing the hemoglobin concentration and volume of fluid in the container, the volume of patient blood loss in the container can be determined. The blood loss measuring device in combination with infusion systems maintains a real-blood volume status so that proper infusion of blood, crystalloid and/or colloid solutions occurs.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: May 14, 2019
    Assignee: MAJELCO MEDICAL, INC.
    Inventors: Alfred Akerman, Stephen W. Allison, Matthew B. Scudiere, Michael R. Cates, David L. Beshears, Lara Brewer, Adan James Akerman
  • Publication number: 20190041405
    Abstract: A system for measuring the blood loss comprises a measuring device that determines a hemoglobin concentration of fluid within a container utilizing a light source and a light detector. The container receives blood and other fluids from a patient during a medical procedure. Light from the light source is passed through the blood and other fluids in the container and is detected by the light detector. Based upon a magnitude of light detected, a hemoglobin concentration of the fluid in the container can be determined. A volume-measuring device determines the volume of blood and fluid in the container. Knowing the hemoglobin concentration and volume of fluid in the container, the volume of patient blood loss in the container can be determined. The blood loss measuring device in combination with infusion systems maintains a real-blood volume status so that proper infusion of blood, crystalloid and/or colloid solutions occurs.
    Type: Application
    Filed: October 11, 2018
    Publication date: February 7, 2019
    Inventors: Annette Macintyre, Lara Brewer, Suzanne Wendelken, Quinn Tate, Soeren Hoehne, Alfred Akerman, Stephen W. Allison, Matthew B. Scudiere, Michael R. Cates, David L. Beshears, Adan James Akerman
  • Publication number: 20170290518
    Abstract: A system for measuring the blood loss comprises a measuring device that determines a hemoglobin concentration of fluid within a container utilizing a light source and a light detector. The container receives blood and other fluids from a patient during a medical procedure. Light from the light source is passed through the blood and other fluids in the container and is detected by the light detector. Based upon a magnitude of light detected, a hemoglobin concentration of the fluid in the container can be determined. A volume-measuring device determines the volume of blood and fluid in the container. Knowing the hemoglobin concentration and volume of fluid in the container, the volume of patient blood loss in the container can be determined. The blood loss measuring device in combination with infusion systems maintains a real-blood volume status so that proper infusion of blood, crystalloid and/or colloid solutions occurs.
    Type: Application
    Filed: April 11, 2017
    Publication date: October 12, 2017
    Inventors: Alfred Akerman, Stephen W. Allison, Matthew B. Scudiere, Michael R. Cates, David L. Beshears, Lara Brewer, Adan James Akerman
  • Patent number: 6456383
    Abstract: This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through a screen at least partially opaque at the wavelength. The screen has an aperture sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector spaced some distance from the screen. The detector detects the central intensity of the beam as well as a set of intensities displaced from a center of the aperture. The distance from the source to the target can then be calculated based upon the known wavelength, aperture radius, and beam intensity.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: September 24, 2002
    Assignees: UT Battelle, LLC, The University of Tennessee Research Corporation
    Inventors: Dennis D. Earl, Stephen W. Allison, Michael R. Cates, Alvin J. Sanders
  • Patent number: 6123455
    Abstract: An apparatus for measuring the temperature of a moving substrate includes an air gun with a powder inlet port in communication with the outlet port of a powder reservoir, an air inlet port in communication with a pressurized air source, and an outlet nozzle spaced from and directed toward the moving substrate. The air gun is activated by the air pulses to spray controlled amounts of the powdered phosphor onto the moving substrate, where the phosphor assumes the temperature of the moving substrate. A laser produces light pulses, and optics direct the light pulses onto the phosphor on the moving substrate, in response to which the phosphor emits a luminescence with a decay rate indicative of the temperature of the phosphor. A collection lens is disposed to focus the luminescence, and a photodetector detects the luminescence focused by the collection lens and produces an electrical signal that is characteristic of the brightness of the luminescence.
    Type: Grant
    Filed: May 2, 1997
    Date of Patent: September 26, 2000
    Assignee: American Iron and Steel Institute
    Inventors: David L. Beshears, David N. Sitter, Jr., William H. Andrews, Marc L. Simpson, Ruth A. Abston, Michael R. Cates, Steve W. Allison
  • Patent number: 5986272
    Abstract: A method for determining the temperature of a fluorescing phosphor is provided, together with an apparatus for performing the method. The apparatus includes a photodetector for detecting light emitted by a phosphor irradiated with an excitation pulse and for converting the detected light into an electrical signal. The apparatus further includes a differentiator for differentiating the electrical signal and a zero-crossing discrimination circuit that outputs a pulse signal having a pulse width corresponding to the time period between the start of the excitation pulse and the time when the differentiated electrical signal reaches zero. The width of the output pulse signal is proportional to the decay-time constant of the phosphor.
    Type: Grant
    Filed: April 19, 1999
    Date of Patent: November 16, 1999
    Assignee: American Iron and Steel Institute
    Inventors: Charles L. Britton, Jr., David L. Beshears, Marc L. Simpson, Michael R. Cates, Steve W. Allison
  • Patent number: 5949539
    Abstract: A method for determining the decay-time constant of a fluorescing phosphor is provided, together with an apparatus for performing the method. The apparatus includes a photodetector for detecting light emitted by a phosphor irradiated with an excitation pulse and for converting the detected light into an electrical signal. The apparatus further includes a differentiator for differentiating the electrical signal and a zero-crossing discrimination circuit that outputs a pulse signal having a pulse width corresponding to the time period between the start of the excitation pulse and the time when the differentiated electrical signal reaches zero. The width of the output pulse signal is proportional to the decay-time constant of the phosphor.
    Type: Grant
    Filed: November 10, 1997
    Date of Patent: September 7, 1999
    Assignee: American Iron and Steel Institute
    Inventors: Charles L. Britton, Jr., David L. Beshears, Marc L. Simpson, Michael R. Cates, Steve W. Allison
  • Patent number: 5914785
    Abstract: This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through an object which causes it to be split (hereinafter referred to as a "beamsplitter"), and then to a target. The beam is reflected from the target onto a screen containing an aperture spaced a known distance from the beamsplitter. The aperture is sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector, spaced a known distance from the screen. The detector detects the central intensity of the beam. The distance from the object which causes the beam to be split to the target can then be calculated based upon the known wavelength, aperture radius, beam intensity, and distance from the detector to the screen.
    Type: Grant
    Filed: February 4, 1998
    Date of Patent: June 22, 1999
    Assignees: The University of Tennesee Research Corporation, Lockheed Martin Energy Research Corporation
    Inventors: Stephen W. Allison, Michael R. Cates, William S. Key, Alvin J. Sanders, Dennis D. Earl
  • Patent number: 5885484
    Abstract: A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %.The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.
    Type: Grant
    Filed: September 23, 1997
    Date of Patent: March 23, 1999
    Assignee: Lockheed Martin Energy Research Corp.
    Inventors: Stephen W. Allison, Michael R. Cates, Lynn A. Boatner, George T. Gillies
  • Patent number: 5730528
    Abstract: A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured.
    Type: Grant
    Filed: August 28, 1996
    Date of Patent: March 24, 1998
    Assignee: Lockheed Martin Energy Systems, Inc.
    Inventors: Stephen W. Allison, Michael R. Cates, Lynn A. Boatner, George T. Gillies
  • Patent number: 5044765
    Abstract: A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.
    Type: Grant
    Filed: August 24, 1990
    Date of Patent: September 3, 1991
    Assignee: United States Department of Energy and United States Department of Air Force
    Inventors: Bruce W. Noel, Henry M. Borella, Michael R. Cates, W. Dale Turley, Charles D. MaCarthur, Gregory C. Cala
  • Patent number: 5026170
    Abstract: A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator wherein each thermographic layer comprises a plurality of respective thermographic phosphors. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.
    Type: Grant
    Filed: June 7, 1989
    Date of Patent: June 25, 1991
    Assignees: The United States of America as represented by the United States Department of Energy, The United States of America as represented by the Secretary of the Air Force
    Inventors: Bruce W. Noel, Henry M. Borella, Michael R. Cates, W. Dale Turley, Charles D. MacArthur, Gregory C. Cala
  • Patent number: 5005984
    Abstract: A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.
    Type: Grant
    Filed: August 24, 1990
    Date of Patent: April 9, 1991
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Bruce W. Noel, Henry M. Borella, Michael R. Cates, W. Dale Turley, Charles D. MacArthur, Gregory C. Cala
  • Patent number: 4497768
    Abstract: Simultaneous photon and neutron interrogation of samples for the quantitative determination of total fissile nuclide and total fertile nuclide material present is made possible by the use of an electron accelerator. Prompt and delayed neutrons produced from resulting induced fissions are counted using a single detection system and allow the resolution of the contributions from each interrogating flux leading in turn to the quantitative determination sought. Detection limits for .sup.239 Pu are estimated to be about 3 mg using prompt fission neutrons and about 6 mg using delayed neutrons.
    Type: Grant
    Filed: July 7, 1982
    Date of Patent: February 5, 1985
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: John T. Caldwell, Walter E. Kunz, Michael R. Cates, Larry A. Franks